scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
17 Jun 2007
TL;DR: Experimental results on a middle-scale data set have demonstrated the effectiveness of the proposed multi-modal biometric identification method and system.
Abstract: In this paper, we present a face and palmprint multimodal biometric identification method and system to improve the identification performance. Effective classifiers based on ordinal features are constructed for faces and palmprints, respectively. Then, the matching scores from the two classifiers are combined using several fusion strategies. Experimental results on a middle-scale data set have demonstrated the effectiveness of the proposed system.

22 citations

Journal ArticleDOI
TL;DR: This paper proposes to use the continuous relaxation labeling (RL) as an alternative approach for the minimization, and compares various algorithms proposed, namely, the RL algorithms proposed by Rosenfeld et al., and by Hummel and Zucker.
Abstract: Recently, there has been increasing interest in Markov random field (MRF) modeling for solving a variety of computer vision problems formulated in terms of the maximum a posteriori (MAP) probability. When the label set is discrete, such as in image segmentation and matching, the minimization is combinatorial. The objective of this paper is twofold: Firstly, we propose to use the continuous relaxation labeling (RL) as an alternative approach for the minimization. The motivation is that it provides a good compromise between the solution quality and the computational cost. We show how the original combinatorial optimization can be converted into a form suitable for continuous RL. Secondly, we compare various minimization algorithms, namely, the RL algorithms proposed by Rosenfeld et al., and by Hummel and Zucker, the mean field annealing of Peterson and Soderberg, simulated annealing of Kirkpatrick, the iterative conditional modes (ICM) of Besag and an annealing version of ICM proposed in this paper. The comparisons are in terms of the minimized energy value (i.e., the solution quality), the required number of iterations (i.e., the computational cost), and also the dependence of each algorithm on heuristics.

22 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: Wang et al. as discussed by the authors proposed to utilize facial detail, which is the combination of direct light and identity texture, as the clue to detect the subtle forgery patterns, and introduce a two-stream structure to exploit both face image and facial detail together as a multi-modality task.
Abstract: Detecting digital face manipulation has attracted extensive attention due to fake media’s potential harms to the public. However, recent advances have been able to reduce the forgery signals to a low magnitude. Decomposition, which reversibly decomposes an image into several constituent elements, is a promising way to highlight the hidden forgery details. In this paper, we consider a face image as the production of the intervention of the underlying 3D geometry and the lighting environment, and decompose it in a computer graphics view. Specifically, by disentangling the face image into 3D shape, common texture, identity texture, ambient light, and direct light, we find the devil lies in the direct light and the identity texture. Based on this observation, we propose to utilize facial detail, which is the combination of direct light and identity texture, as the clue to detect the subtle forgery patterns. Besides, we highlight the manipulated region with a supervised attention mechanism and introduce a two-stream structure to exploit both face image and facial detail together as a multi-modality task. Extensive experiments indicate the effectiveness of the extra features extracted from the facial detail, and our method achieves the state-of-the-art performance.

22 citations

Journal ArticleDOI
TL;DR: P-LDA is developed, in which perturbation random vectors are introduced to learn the effect of the difference between the class empirical mean and its expectation in Fisher criterion, and which outperforms the popular Fisher's LDA-based algorithms in the undersampled case.

22 citations

01 Jan 2007

21 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations