scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
07 May 2001
TL;DR: Experimental results on the Brodatz texture database indicate that a significantly better retrieval performance can be achieved as compared to the traditional Euclidean distance-based approach.
Abstract: A new metric is proposed for texture image retrieval, which is based on the signed distance of the images in the database to a boundary chosen by the query. This novel metric has three advantages: (1) the boundary distance measures are relatively insensitive to the sample distributions; (2) the same retrieval results can be obtained with respect to different (but visually similar) queries; (3) retrieval performance can be improved. The boundaries are obtained by using a statistical learning algorithm called support vector machine (SVM), and hence the boundaries can be simply represented by some vectors and their combination coefficients. Experimental results on the Brodatz texture database indicate that a significantly better retrieval performance can be achieved as compared to the traditional Euclidean distance-based approach. This technique can be further developed to learn pattern similarities among different texture classes and used in relevance feedback.

18 citations

01 Jan 2004
TL;DR: A shape evaluation method and a new search algorithm, called weighted ASM, are proposed, based on the local appearance model of ASM to determine how well the searching shape match models derived from the training set are matched.
Abstract: Active Shape Models (ASM) is a powerful statistical tool for face alignment. However, no evaluation is performed on the final results. Nevertheless, the shape evaluation information is very useful for the search and the final results. In this paper, a shape evaluation method and a new search algorithm, called weighted ASM, are proposed. The shape evaluation is based on the local appearance model of ASM to determine how well the searching shape match models derived from the training set. It is used to guide the search procedure to get more accurate results. The weighted-ASM also uses this evaluation information to project the searching shape into the solution shape space in a weighted way. Compared with ASM’s orthogonal projection, the weighted projection can drag the search out of local minima to be more accurate and more robust. Experiments have been done to show the ability of this method to align shapes.

18 citations

Proceedings ArticleDOI
22 Sep 2022
TL;DR: PiFold generates protein sequences in a one-shot manner, without autoregressive or iterative decoding schemas, and recovery scores on TS50 and TS500, respectively.
Abstract: How can we design protein sequences folding into the desired structures effectively and efficiently? AI methods for structure-based protein design have attracted increasing attention in recent years; however, few methods can simultaneously improve the accuracy and efficiency due to the lack of expressive features and autoregressive sequence decoder. To address these issues, we propose PiFold, which contains a novel residue featurizer and PiGNN layers to generate protein sequences in a one-shot way with improved recovery. Experiments show that PiFold could achieve 51.66\% recovery on CATH 4.2, while the inference speed is 70 times faster than the autoregressive competitors. In addition, PiFold achieves 58.72\% and 60.42\% recovery scores on TS50 and TS500, respectively. We conduct comprehensive ablation studies to reveal the role of different types of protein features and model designs, inspiring further simplification and improvement. The PyTorch code is available at \href{https://github.com/A4Bio/PiFold}{GitHub}.

18 citations

Proceedings ArticleDOI
23 Aug 2010
TL;DR: The OPBS selects n principal backgrounds from N backgrounds in an online fashion with a low memory cost, making it possible to build an efficient online video synopsis system.
Abstract: Video synopsis provides a means for fast browsing of activities in video. Principal background selection (PBS) is an important step in video synopsis. Existing methods make PBS in an offline way and at a high memory cost. In this paper we propose a novel background selection method, ``online principal background selection'' (OPBS). The OPBS selects n principal backgrounds from N backgrounds in an online fashion with a low memory cost, making it possible to build an efficient online video synopsis system. Another advantage is that, with OPBS, the selected backgrounds are related to not only background changes over time but also video activities. Experimental results demonstrate the advantages of the proposed OPBS.

17 citations

Journal ArticleDOI
TL;DR: A novel theory of parameter estimation for optimization-based object recognition where the optimal solution is defined as the global minimum of an energy function.
Abstract: Object recognition systems involve parameters such as thresholds, bounds and weights. These parameters have to be tuned before the system can perform successfully. A common practice is to choose such parameters manually on an {\it add\ hoc} basis, which is a disadvantage. This paper presents a novel theory of parameter estimation for optimization-based object recognition where the optimal solution is defined as the global minimum of an energy function. The theory is based on supervised learning from examples. {\it Correctness} and {\it instability} are established as criteria for evaluating the estimated parameters. A correct estimate enables the labeling implied in each exemplary configuration to be encoded in a unique global energy minimum. The instability is the ease with which the minimum is replaced by a non-exemplary configuration after a perturbation. The optimal estimate minimizes the instability. Algorithms are presented for computing correct and minimal-instability estimates. The theory is applied to the parameter estimation for MRF-based recognition and promising results are obtained.

17 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations