scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A statistically optimal formulation is presented for recognizing multiple, partially occluded objects, in terms of the maximum a posteriori (MAP) principle, with respect to all, rather than just individual modeled objects.
Abstract: A statistically optimal formulation is presented for recognizing multiple, partially occluded objects. The optimality, in terms of the maximum a posteriori (MAP) principle, is with respect to all, rather than just individual modeled objects. Various constraints are incorporated into the posterior distribution, a two-stage MAP estimation approach is proposed to reduce the computational cost.

15 citations

Journal Article
TL;DR: Experiments quantitatively show that the proposed method learns meaningful representations in the latent space toward the target-aware molecular graph generation and provides an alternative approach to bridge biology and chemistry in drug discovery.
Abstract: Generating molecules with desired biological activities has attracted growing attention in drug discovery. Previous molecular generation models are designed as chemocentric methods that hardly consider the drug-target interaction, limiting their practical applications. In this paper, we aim to generate molecular drugs in a target-aware manner that bridges biological activity and molecular design. To solve this problem, we compile a benchmark dataset from several publicly available datasets and build baselines in a unified framework. Building on the recent advantages of flow-based molecular generation models, we propose SiamFlow, which forces the flow to fit the distribution of target sequence embeddings in latent space. Specifically, we employ an alignment loss and a uniform loss to bring target sequence embeddings and drug graph embeddings into agreements while avoiding collapse. Furthermore, we formulate the alignment into a one-to-many problem by learning spaces of target sequence embeddings. Experiments quantitatively show that our proposed method learns meaningful representations in the latent space toward the target-aware molecular graph generation and provides an alternative approach to bridge biology and chemistry in drug discovery.

15 citations

Journal ArticleDOI
TL;DR: A unified framework, named CAScaded Split-and-Aggregate Learning with Feature Recombination (CAS-SAL-FR), to learn the above modules jointly and concurrently achieves new state-of-the-art performance.
Abstract: Multi-label pedestrian attribute recognition in surveillance is inherently a challenging task due to poor imaging quality, large pose variations, and so on. In this paper, we improve its performance from the following two aspects: (1) We propose a cascaded Split-and-Aggregate Learning (SAL) to capture both the individuality and commonality for all attributes, with one at the feature map level and the other at the feature vector level. For the former, we split the features of each attribute by using a designed attribute-specific attention module (ASAM). For the later, the split features for each attribute are learned by using constrained losses. In both modules, the split features are aggregated by using several convolutional or fully connected layers. (2) We propose a Feature Recombination (FR) that conducts a random shuffle based on the split features over a batch of samples to synthesize more training samples, which spans the potential samples’ variability. To the end, we formulate a unified framework, named CAScaded Split-and-Aggregate Learning with Feature Recombination (CAS-SAL-FR), to learn the above modules jointly and concurrently. Experiments on five popular benchmarks, including RAP, PA-100K, PETA, Market-1501 and Duke attribute datasets, show the proposed CAS-SAL-FR achieves new state-of-the-art performance.

15 citations

Journal ArticleDOI
TL;DR: Extensive experiments and ablation studies on seven RE-ID datasets demonstrate the superiority of the proposed EEA over most state-of-the-art unsupervised and domain adaptation RE- ID methods.

15 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: This paper analyzes the problem in a more general framework called Constrained Sparse Matrix Factorization (CSMF), and can successfully extract all the proper components without any ghost on Swimmer, gaining a significant improvement over the compared well-known algorithms.
Abstract: Various linear subspace methods can be formulated in the notion of matrix factorization in which a cost function is minimized subject to some constraints. Among them, constraints on sparseness have received much attention recently. Some popular constraints such as non-negativity, lasso penalty, and (plain) orthogonality etc have been so far applied to extract sparse features. However, little work has been done to give theoretical and experimental analyses on the differences of the impacts of different constraints within a framework. In this paper, we analyze the problem in a more general framework called Constrained Sparse Matrix Factorization (CSMF). In CSMF, a particular case called CSMF with non-negative components (CSMFnc) is further discussed. Unlike NMF, CSMFnc allows not only additive but also subtractive combinations of non-negative sparse components. It is useful to produce much sparser features than those produced by NMF and meanwhile have better reconstruction ability, achieving a trade-off between sparseness and low MSE value. Moreover, for optimization, an alternating algorithm is developed and a gentle update strategy is further proposed for handling the alternating process. Experimental analyses are performed on the Swimmer data set and CBCLface database. In particular, CSMF can successfully extract all the proper components without any ghost on Swimmer, gaining a significant improvement over the compared well-known algorithms.

14 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations