scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Posted Content
TL;DR: Zhang et al. as discussed by the authors extract Gabor features at some localized facial points, and then use Restricted Boltzmann Machines (RBMs) to learn a shared representation locally to remove the heterogeneity around each facial point.
Abstract: After intensive research, heterogenous face recognition is still a challenging problem. The main difficulties are owing to the complex relationship between heterogenous face image spaces. The heterogeneity is always tightly coupled with other variations, which makes the relationship of heterogenous face images highly nonlinear. Many excellent methods have been proposed to model the nonlinear relationship, but they apt to overfit to the training set, due to limited samples. Inspired by the unsupervised algorithms in deep learning, this paper proposes an novel framework for heterogeneous face recognition. We first extract Gabor features at some localized facial points, and then use Restricted Boltzmann Machines (RBMs) to learn a shared representation locally to remove the heterogeneity around each facial point. Finally, the shared representations of local RBMs are connected together and processed by PCA. Two problems (Sketch-Photo and NIR-VIS) and three databases are selected to evaluate the proposed method. For Sketch-Photo problem, we obtain perfect results on the CUFS database. For NIR-VIS problem, we produce new state-of-the-art performance on the CASIA HFB and NIR-VIS 2.0 databases.

10 citations

Proceedings ArticleDOI
23 Aug 2004
TL;DR: The NICS classifier outperforms other classifiers in terms of recognition performance and is based on the nearest weighted distance, combining distance-from-subspace and distance-in- subspace, between the query face and each intra-class subspace.
Abstract: We propose a novel classification method, called nearest intra-class space (NICS), for face recognition. In our method, the distribution of face patterns of each person is represented by the intra-class space to capture all intra-class variations. Then, a regular principal subspace is derived from each intra-class space using principal component analysis. The classification is based on the nearest weighted distance, combining distance-from-subspace and distance-in-subspace, between the query face and each intra-class subspace. Experimental results show that the NICS classifier outperforms other classifiers in terms of recognition performance.

10 citations

Book ChapterDOI
13 Nov 2015
TL;DR: A stacked structure called Discriminant Face Descriptor network (DFDnet) is proposed to learn the most discriminative and related features to age variation to help facial age estimation.
Abstract: Age estimation is an important part of biometric recognition. In this paper, we propose to use Discriminant Face Descriptor (DFD) which learns the most discriminative and related features to age variation in a data-driven way. We use it, for the first time, for facial age Age estimation is an important part of biometric recognition. In this paper, we propose a stacked structure called Discriminant Face Descriptor network (DFDnet) to learn the most discriminative and related features to age variation. We extract the multi-stage Discriminant Face Descriptor (DFD) features which are age-sensitive. We first introduce DFD for facial age estimation instead of original face recognition. Then the bag-of-features method is used so that each image can be represented by the histogram of visual words. Finally, age estimation is achieved via simple linear regression algorithm. Experiments on the publicly available MORPH and FG-NET databases validate the effectiveness of our proposed DFDnet method. To further illuminate the usefulness of our approach in unconstrained environments, we also conduct the experiment on Cross-Age Celebrity Dataset (CACD) which is collected from Internet movie database (IMDB).

10 citations

Journal ArticleDOI
TL;DR: The algorithm is capable of subgraph matching of an image road structure to a map road model covering an area 10 times larger than the area imaged by the sensor, provided that the image distortion due to perspective imaging geometry has been corrected during preprocessing stages.
Abstract: We have developed a method of matching and recognizing aerial road network images based on road network models. The input is a list of line segments of an image obtained from a preprocessing stage, which is usually fragmentary and contains extraneous noisy segments. The output is the correspondences between the image line segments and model line segments. We use attributed relational graphs (ARG) to describe images and models. An ARG consists of a set of nodes, each node representing a line segment, and attributed relations between nodes. The task of matching is to find the best correspondences between the image ARG and the model ARG. The correspondences are found using a relaxation labeling algorithm, which optimizes a criterion of similarity. The algorithm is capable of subgraph matching of an image road structure to a map road model covering an area 10 times larger than the area imaged by the sensor, provided that the image distortion due to perspective imaging geometry has been corrected during preprocessing stages. We present matching experiments and demonstrate the stability of the matching method to extraneous line segments, missing line segments, and errors in scaling.

10 citations

Posted Content
TL;DR: This work proposes a novel framework, called Markov-Lipschitz deep learning (MLDL), to tackle geometric deterioration caused by collapse, twisting, or crossing in vector-based neural network transformations for manifold-based representation learning and manifold data generation.
Abstract: We propose a novel framework, called Markov-Lipschitz deep learning (MLDL), to tackle geometric deterioration caused by collapse, twisting, or crossing in vector-based neural network transformations for manifold-based representation learning and manifold data generation. A prior constraint, called locally isometric smoothness (LIS), is imposed across-layers and encoded into a Markov random field (MRF)-Gibbs distribution. This leads to the best possible solutions for local geometry preservation and robustness as measured by locally geometric distortion and locally bi-Lipschitz continuity. Consequently, the layer-wise vector transformations are enhanced into well-behaved, LIS-constrained metric homeomorphisms. Extensive experiments, comparisons, and ablation study demonstrate significant advantages of MLDL for manifold learning and manifold data generation. MLDL is general enough to enhance any vector transformation-based networks. The code is available at this https URL.

10 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations