scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
22 Nov 2006
TL;DR: A unified framework for learning feature extraction and classification in appearance-spatial space for multiple object tracking by minimizing an criterion which corresponds to an upperbound of classification error.
Abstract: A great challenge in tracking multiple objects is how to locate each object when they interact and form a group. We view it as a binary classification problem. It is important to base the classification on the currently most discriminative features. We derive a unified framework for learning feature extraction and classification in appearance-spatial space for multiple object tracking. In this framework, both classifier design and feature evaluation are accomplished by minimizing an criterion which corresponds to an upperbound of classification error. There, the most discriminative features, as variables, minimize the criterion function, whereas the classifier, as a function, minimizes the criterion functional. The resulting system offers high accuracy for real-time tracking of nearby multiple objects in complex and dynamic scenes.

4 citations

Proceedings ArticleDOI
29 Mar 2023
TL;DR: In this paper , the authors argue that negative cross-entropy tends to produce more significant gradients from nodes with lower confidence in the labeled classes, even if the predicted classes of these nodes have been misled.
Abstract: It has become cognitive inertia to employ cross-entropy loss function in classification related tasks. In the untargeted attacks on graph structure, the gradients derived from the attack objective are the attacker's basis for evaluating a perturbation scheme. Previous methods use negative cross-entropy loss as the attack objective in attacking node-level classification models. However, the suitability of the cross-entropy function for constructing the untargeted attack objective has yet been discussed in previous works. This paper argues about the previous unreasonable attack objective from the perspective of budget allocation. We demonstrate theoretically and empirically that negative cross-entropy tends to produce more significant gradients from nodes with lower confidence in the labeled classes, even if the predicted classes of these nodes have been misled. To free up these inefficient attack budgets, we propose a simple attack model for untargeted attacks on graph structure based on a novel attack objective which generates unweighted gradients on graph structures that are not affected by the node confidence. By conducting experiments in gray-box poisoning attack scenarios, we demonstrate that a reasonable budget allocation can significantly improve the effectiveness of gradient-based edge perturbations without any extra hyper-parameter.

4 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: Experimental results shows that the proposed GRF-NMF algorithm significantly outperforms other NMF related algorithms in sparsity, smoothness, and locality of the learned components.
Abstract: In this paper, we present a Gibbs Random Field (GRF) modeling based Nonnegative Matrix Factorization (NMF) algorithm, called GRF-NMF. We propose to treat the component matrix of NMF as a Gibbs random field. Since each component presents a localized object part, as usually expected, we propose an energy function with the prior knowledge of smoothness and locality. This way of directly modeling on the structure of components makes the algorithm able to learn sparse, smooth, and localized object parts. Furthermore, we find that at each update iteration, the constrained term can be processed conveniently via local filtering on components. Finally we give a well established convergence proof for the derived algorithm. Experimental results on both synthesized and real image databases shows that the proposed GRF-NMF algorithm significantly outperforms other NMF related algorithms in sparsity, smoothness, and locality of the learned components.

3 citations

Proceedings ArticleDOI
Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, Stan Z. Li 
23 May 2022
TL;DR: This work converts the label correction to the Optimal Transport (OT) formulation and proposes to utilize a fast version of the Sinkhorn-Knopp algorithm for finding an approximate solution efficiently at scale.
Abstract: Datasets with noisy labels present challenges for training Deep Neural Networks (DNNs) with high generalization ability. An direct idea is to correct the noisy labels for robust learning. However, existing label correction methods can not handle with heavy noise or datasets with samples of many categories so well. We explain the reasons and introduce a global label distribution regularization to remedy these deficiencies. With this regularization, we convert the label correction to the Optimal Transport (OT) formulation and propose to utilize a fast version of the Sinkhorn-Knopp algorithm for finding an approximate solution efficiently at scale. Experiments on benchmark datasets with both synthetic and real-world label noise show that the superiority of our OT Cleaner in terms of both training efficiency and classification accuracy. The code is available at: https://github.com/junxia97/OT-Cleaner.

3 citations

Book ChapterDOI
18 Nov 2007
TL;DR: This paper takes a predefined geometry shape as a constraint for accurate shape alignment and introduces Bayesian inference to make the whole shape more robust to local noise generated by the active shape, which leads to a compensation factor and a smooth factor for a coarse-to-fine shape search.
Abstract: In this paper, we take a predefined geometry shape as a constraint for accurate shape alignment. A shape model is divided in two parts: fixed shape and active shape. The fixed shape is a user-predefined simple shape with only a few landmarks which can be easily and accurately located by machine or human. The active one is composed of many landmarks with complex shape contour. When searching an active shape, pose parameter is calculated by the fixed shape. Bayesian inference is introduced to make the whole shape more robust to local noise generated by the active shape, which leads to a compensation factor and a smooth factor for a coarse-to-fine shape search. This method provides a simple and stable means for online and offline shape analysis. Experiments on cheek and face contour demonstrate the effectiveness of our proposed approach.

3 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations