scispace - formally typeset
Search or ask a question
Author

Stanislav Kopriva

Bio: Stanislav Kopriva is an academic researcher from University of Cologne. The author has contributed to research in topics: Sulfate assimilation & Sulfur metabolism. The author has an hindex of 53, co-authored 185 publications receiving 9215 citations. Previous affiliations of Stanislav Kopriva include University of Bern & University of Fribourg.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve the understanding of the molecular mechanisms underpinning this phenomenon.
Abstract: In their natural environment plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are however largely unknown. In this review we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.

748 citations

Journal ArticleDOI
TL;DR: This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
Abstract: Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.

680 citations

Journal ArticleDOI
TL;DR: Despite significant progress in understanding the regulation of sulphate assimilation and glutathione synthesis, their co-ordination with N and C metabolism achieved, and several potential signal molecules identified, present knowledge is still far from being sufficient.
Abstract: Sulphate assimilation is an essential pathway being a source of reduced sulphur for various cellular processes and for the synthesis of glutathione, a major factor in plant stress defence. Many reports have shown that sulphate assimilation is well co-ordinated with the assimilation of nitrate and carbon. It has long been known that, during nitrate deficiency, sulphate assimilation is reduced and that the capacity to reduce nitrate is diminished in plants starved for sulphate. Only recently, however, was it shown that adenosine 59 phosphosulphate reductase (APR), the key enzyme of sulphate assimilation, is regulated by carbohydrates. In plants treated with sucrose or glucose APR was induced, whereas the activity was strongly reduced in plants grown in CO2-free air. The availability of cysteine is a crucial factor in glutathione synthesis, but an adequate supply of glutamate and glycine are also important. The molecular mechanisms for the coordination of S, N, and C assimilation are not known. O-acetylserine, a precursor of cysteine, was proposed to be the signal regulating sulphate assimilation, but most probably is not the outgoing signal to N and C metabolism. cDNA arrays revealed the induction of genes involved in auxin synthesis upon S-starvation, pointing to a possible role of phytohormones. Clearly, despite significant progress in understanding the regulation of sulphate assimilation and glutathione synthesis, their co-ordination with N and C metabolism achieved, and several potential signal molecules identified, present knowledge is still far from being sufficient.

322 citations

Journal ArticleDOI
TL;DR: The response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria.
Abstract: The availability of nitrogen varies greatly in the ocean and limits primary productivity over large areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent diatom genome projects have highlighted clues to the success of this group, very little is known about their adaptive response to changing environmental conditions. Here, we compare the proteome of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with that of nitrogen-replete cells using two-dimensional gel electrophoresis. In total, 3,310 protein spots were distinguishable, and we identified 42 proteins increasing and 23 decreasing in abundance (greater than 1.5-fold change; P < 0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins, and carbohydrates, photosynthesis, and chlorophyll biosynthesis were represented. Comparison of our proteomics data with the transcriptome response of this species under similar growth conditions showed good correlation and provided insight into different levels of response. The T. pseudonana response to nitrogen starvation was also compared with that of the higher plant Arabidopsis (Arabidopsis thaliana), the green alga Chlamydomonas reinhardtii, and the cyanobacterium Prochlorococcus marinus. We have found that the response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria.

314 citations

Journal ArticleDOI
TL;DR: The data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.
Abstract: Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5′-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mm each of NO 3 − , NH 4 + , or glutamine (Gln), or 1 mm O -acetylserine (OAS). 35 SO 4 2− feeding showed that after addition of NH 4 + , Gln, or OAS to nitrogen-starved plants, incorporation of 35 S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.

295 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses.
Abstract: MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.

3,388 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role ofJASMONATE signalling pathways in stress responses and development.

1,868 citations