scispace - formally typeset
Search or ask a question
Author

Stanislav O. Yurchenko

Bio: Stanislav O. Yurchenko is an academic researcher from Bauman Moscow State Technical University. The author has contributed to research in topics: Terahertz radiation & Photonic crystal. The author has an hindex of 30, co-authored 128 publications receiving 2322 citations. Previous affiliations of Stanislav O. Yurchenko include I.M. Sechenov First Moscow State Medical University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a hydrodynamic model was proposed to describe steady-state and dynamic electron and hole transport properties of graphene structures, which accounts for the features of the electron and holes spectra.
Abstract: We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of inter-carrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity; in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a hydrodynamic model was proposed to describe steady-state and dynamic electron and hole transport properties of graphene structures, which accounts for the features of the electron and holes spectra.
Abstract: We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

112 citations

Journal ArticleDOI
TL;DR: The results demonstrate that THz pulsed spectroscopy is potentially an effective tool for non-invasive early diagnosis of dysplastic nevi and melanomas of the skin.
Abstract: In vivo terahertz (THz) spectroscopy of pigmentary skin nevi is performed. The in vivo THz dielectric characteristics of healthy skin and dysplastic and non-dysplastic skin nevi are reconstructed and analyzed. The dielectric permittivity curves of these samples in the THz range exhibit significant differences that could allow non-invasive early diagnosis of dysplastic nevi, which are melanoma precursors. An approach for differentiating dysplastic and non-dysplastic skin nevi using the THz dielectric permittivity is proposed. The results demonstrate that THz pulsed spectroscopy is potentially an effective tool for non-invasive early diagnosis of dysplastic nevi and melanomas of the skin.

109 citations

Journal ArticleDOI
TL;DR: A new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields, which is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids.
Abstract: Tunable interparticle interactions in colloidal suspensions are of great interest because of their fundamental and practical significance. In this paper we present a new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields. The maximal magnitude of the field in a suspension is 25 V/mm, the field homogeneity is better than 1% over the horizontal distance of 250 μm, and the rotation frequency is in the range of 40 Hz to 30 kHz. Based on numerical electrostatic calculations for the developed setup with eight planar electrodes, we found optimal experimental conditions and performed demonstration experiments with a suspension of 2.12 μm silica particles in water. Thanks to its technological flexibility, the setup is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids, and therefore it should be of interest for a broad community of soft matter, photonics, and material science.

101 citations

Journal ArticleDOI
TL;DR: In this paper, a terahertz (THz) pulsed spectroscopy (TPS) was used for non-destructive control of polymer binder polymerization, since THz radiation is sensitive to changes of picosecond dynamics in media.
Abstract: Nowadays, composite materials are widely used in building and construction industry, in motor-vehicles, spacecrafts and aircrafts, and in biomedical science due to the ability of combining various consistent components for manufacturing composite materials with physical and chemical properties significantly different from the properties of each component. Polymer composite materials (PCMs) appear to be the most common type of composites. PCMs consist mainly of polymer binder reinforced with the glass-fiber-fabric. Although PCMs are widely applied, PCM manufacturing technology lacks the methods of non- destructive testing. In this paper we demonstrate that terahertz (THz) pulsed spectroscopy (TPS) appears to be a unique instrument for solving important problems of PCM manufacturing control. We experimentally demonstrate the efficiency of TPS for non-destructive control of PCM binder polymerization, since THz radiation is sensitive to changes of picosecond dynamics in media. Furthermore, we show the ability to detect the internal non-impregnated voids inside the PCM structure by means of THz time-of-flight tomography. These results highlight the potentials of TPS applications for non-destructive control of PCM manufacturing process.

86 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues are reviewed.

576 citations

Journal ArticleDOI
TL;DR: In this paper, the ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene were studied using optical-pump Terahertz-probe spectroscopy.
Abstract: The ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump Terahertz-probe spectroscopy. The conductivity in graphene at Terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination. We report the electron-hole recombination times in epitaxial graphene for the first time. Our results show that carrier cooling occurs on sub-picosecond time scales and that interband recombination times are carrier density dependent.

508 citations

Book ChapterDOI
01 Jul 2000

471 citations

01 Nov 1993
TL;DR: In this paper, the harmonic approximation and lattice dynamics of very simple systems are discussed, and a formal quantum mechanical description of lattice vibrations is given. But it is not shown how far do the atoms move.
Abstract: Foreword Acknowledgements Definitions of symbols used 1. Some fundamentals 2. The harmonic approximation and lattice dynamics of very simple systems 3. Dynamics of diatomic crystals: general principles 4. How far do the atoms move? 5. Lattice dynamics and thermodynamics 6. Formal description 7. Acoustic modes and macroscopic elasticity 8. Anharmonic effects and phase transitions 9. Neutron scattering 10. Infrared and Raman spectroscopy 11. Formal quantum mechanical description of lattice vibrations 12. Molecular dynamics simulations Appendices Problems Bibliography Index.

441 citations