scispace - formally typeset
Search or ask a question
Author

Stanislaw J. Szarek

Bio: Stanislaw J. Szarek is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Banach space & Convex body. The author has an hindex of 31, co-authored 93 publications receiving 2974 citations. Previous affiliations of Stanislaw J. Szarek include Ohio State University & Polish Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors give a characterization of the set of all completely positive, trace-preserving maps Φ: M 2 → M 2 from which one can easily check any tracepreserving map for complete positivity.

357 citations

Journal ArticleDOI
TL;DR: This paper deals with a more general setup, which covers, e.g., the case when 5P is endowed with the 1; the corresponding operator norm is denote by ll’llp+P, and the methods allow us to handle arbitrary norms, on both the domain and the range of G.

183 citations

Journal ArticleDOI
TL;DR: It is conjectured that the exponent 3/2 may be replaced by 1, perhaps at the cost of a logarithmic factor; it is proved that for some naturally arising classes of bodies.
Abstract: Let L be a lattice in Rn and K a convex body disjoint from L. The classical Flatness Theorem asserts that then w(K, L), the L-width of K, does not exceed some bound, depending only on the dimension n; this fact was later found relevant to questions in integer programming. Kannan and Lovasz (1988) showed that under the above assumptions w(K, L) ≤ Cn2, where C is a universal constant. Banaszczyk (1996) proved that w(K, L) ≤ Cn(1 + log n) if K has a centre of symmetry. In the present paper we show that w(K, L) ≤ Cn3/2 for an arbitrary K. It is conjectured that the exponent 3/2 may be replaced by 1, perhaps at the cost of a logarithmic factor; we prove that for some naturally arising classes of bodies.

110 citations

Journal ArticleDOI
TL;DR: This paper showed that Hastings's counterexample to the additivity of minimal output von Neumann entropy can be deduced from a sharp version of Dvoretzky's theorem.
Abstract: The goal of this note is to show that Hastings’s counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky’s theorem.

105 citations


Cited by
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: F can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program) and numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted.
Abstract: This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the /spl lscr//sub 1/-minimization problem (/spl par/x/spl par//sub /spl lscr/1/:=/spl Sigma//sub i/|x/sub i/|) min(g/spl isin/R/sup n/) /spl par/y - Ag/spl par//sub /spl lscr/1/ provided that the support of the vector of errors is not too large, /spl par/e/spl par//sub /spl lscr/0/:=|{i:e/sub i/ /spl ne/ 0}|/spl les//spl rho//spl middot/m for some /spl rho/>0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work. Finally, underlying the success of /spl lscr//sub 1/ is a crucial property we call the uniform uncertainty principle that we shall describe in detail.

6,853 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.
Abstract: Suppose we wish to recover a vector x_0 Є R^m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax_0 + e; A is an n by m matrix with far fewer rows than columns (n « m) and e is an error term. Is it possible to recover x_0 accurately based on the data y? To recover x_0, we consider the solution x^# to the l_(1-)regularization problem min ‖x‖l_1 subject to ‖Ax - y‖l(2) ≤ Є, where Є is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unit-normed columns) and if the vector x_0 is sufficiently sparse, then the solution is within the noise level ‖x^# - x_0‖l_2 ≤ C Є. As a first example, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x_0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x_0; then stable recovery occurs for almost any set of n coefficients provided that the number of nonzeros is of the order of n/[log m]^6. In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals.

6,727 citations

Journal ArticleDOI
TL;DR: If the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program.
Abstract: Suppose we are given a vector f in a class FsubeRopfN , e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision epsi in the Euclidean (lscr2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis) obeys |f|(n)lesRmiddotn-1p/, where R>0 and p>0. Suppose that we take measurements yk=langf# ,Xkrang,k=1,...,K, where the Xk are N-dimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0

6,342 citations