scispace - formally typeset
Search or ask a question
Author

Stanley L. Schrier

Bio: Stanley L. Schrier is an academic researcher from Stanford University. The author has contributed to research in topics: Anemia & Myeloid leukemia. The author has an hindex of 48, co-authored 151 publications receiving 8513 citations. Previous affiliations of Stanley L. Schrier include Brigham and Women's Hospital & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The acquisition of a T674I resistance mutation at the time of relapse demonstrates that FIP1L1-PDGFRalpha is the target of imatinib, and data indicate that the deletion of genetic material may result in gain-of-function fusion proteins.
Abstract: Background Idiopathic hypereosinophilic syndrome involves a prolonged state of eosinophilia associated with organ dysfunction. It is of unknown cause. Recent reports of responses to imatinib in patients with the syndrome suggested that an activated kinase such as ABL, platelet-derived growth factor receptor (PDGFR), or KIT, all of which are inhibited by imatinib, might be the cause. Methods We treated 11 patients with the hypereosinophilic syndrome with imatinib and identified the molecular basis for the response. Results Nine of the 11 patients treated with imatinib had responses lasting more than three months in which the eosinophil count returned to normal. One such patient had a complex chromosomal abnormality, leading to the identification of a fusion of the Fip1-like 1 (FIP1L1) gene to the PDGFRα (PDGFRA) gene generated by an interstitial deletion on chromosome 4q12. FIP1L1-PDGFRα is a constitutively activated tyrosine kinase that transforms hematopoietic cells and is inhibited by imatinib (50 perce...

1,660 citations

Journal ArticleDOI
TL;DR: Age-associated alterations in the frequency, developmental potential, and gene expression profile of human HSC are similar to those changes observed in mouse HSC, suggesting that hematopoietic aging is an evolutionarily conserved process.
Abstract: In the human hematopoietic system, aging is associated with decreased bone marrow cellularity, decreased adaptive immune system function, and increased incidence of anemia and other hematological disorders and malignancies. Recent studies in mice suggest that changes within the hematopoietic stem cell (HSC) population during aging contribute significantly to the manifestation of these age-associated hematopoietic pathologies. Though the mouse HSC population has been shown to change both quantitatively and functionally with age, changes in the human HSC and progenitor cell populations during aging have been incompletely characterized. To elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated immunophenotypic HSC and other hematopoietic progenitor populations from healthy, hematologically normal young and elderly human bone marrow samples. We found that aged immunophenotypic human HSC increase in frequency, are less quiescent, and exhibit myeloid-biased differentiation potential compared with young HSC. Gene expression profiling revealed that aged immunophenotypic human HSC transcriptionally up-regulate genes associated with cell cycle, myeloid lineage specification, and myeloid malignancies. These age-associated alterations in the frequency, developmental potential, and gene expression profile of human HSC are similar to those changes observed in mouse HSC, suggesting that hematopoietic aging is an evolutionarily conserved process.

702 citations

Journal ArticleDOI
15 Apr 2004-Blood
TL;DR: The identification of a constitutively activated fusion tyrosine kinase on chromosome 4q12, derived from an interstitial deletion, that fuses the platelet-derived growth factor receptor-alpha gene (PDGFRA) to an uncharacterized human gene FIP1-like-1 (FIP1L1).

264 citations

Journal ArticleDOI
TL;DR: In vitro regulation of granulocytic proliferation and differentiation was analyzed by study of marrow granulocyte colony-forming capacity (CFC) and peripheral white-cell provision of colony-stimulating activity (CSA) in patients with acute myeloid leukemia and preleukemia, finding AML marrow appears to consist of coexisting normal and leukemic cell clones.
Abstract: In vitro regulation of granulocytic proliferation and differentiation was analyzed by study of marrow granulocytic colony-forming capacity (CFC) and peripheral white-cell provision of colony-stimulating activity (CSA) in patients with acute myeloid leukemia (AML) and preleukemia. Patients with AML in relapse had abnormal marrow CFC, producing either no or excessive numbers of abortive colonies. Furthermore, their leukocytes lacked ability to provide CSA. During complete remission, both these indexes were normal. Sequential studies indicated that marrow CFC correlates with, and probably precedes, detectable changes in clinical and morphologic status. Preleukemic patients showed disordered CFC and CSA, with values similar to those in AML in relapse. AML marrow appears to consist of coexisting normal and leukemic cell clones, and preleukemic marrow to contain either a potentially leukemic clone with greater capacity for differentiation in vivo or a leukemic clone that is held in abeyance.

238 citations


Cited by
More filters
Journal ArticleDOI
30 Jul 2009-Blood
TL;DR: The classification of myeloid neoplasms and acute leukemia is highlighted with the aim of familiarizing hematologists, clinical scientists, and hematopathologists not only with the major changes in the classification but also with the rationale for those changes.

4,274 citations

Journal ArticleDOI
TL;DR: Data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
Abstract: Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.

4,071 citations

Journal ArticleDOI
TL;DR: Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib, which should help guide the search for more effective therapy against a specific subset of lung cancers.
Abstract: Background Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of “acquired” resistance. Methods and Findings We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec). Conclusion In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.

3,390 citations

Journal ArticleDOI

3,152 citations