scispace - formally typeset
Search or ask a question
Author

Stanley Osher

Bio: Stanley Osher is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Level set method & Hyperbolic partial differential equation. The author has an hindex of 114, co-authored 510 publications receiving 104028 citations. Previous affiliations of Stanley Osher include University of Minnesota & University of Innsbruck.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2011
TL;DR: A system that automatically synthesizes indoor scenes realistically populated by a variety of furniture objects is presented and whether there is a significant difference in the perceived functionality of the automatically synthesized results relative to furniture arrangements produced by human designers is investigated.
Abstract: We present a system that automatically synthesizes indoor scenes realistically populated by a variety of furniture objects. Given examples of sensibly furnished indoor scenes, our system extracts, in advance, hierarchical and spatial relationships for various furniture objects, encoding them into priors associated with ergonomic factors, such as visibility and accessibility, which are assembled into a cost function whose optimization yields realistic furniture arrangements. To deal with the prohibitively large search space, the cost function is optimized by simulated annealing using a Metropolis-Hastings state search step. We demonstrate that our system can synthesize multiple realistic furniture arrangements and, through a perceptual study, investigate whether there is a significant difference in the perceived functionality of the automatically synthesized results relative to furniture arrangements produced by human designers.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the surface is represented as the level set of a higher dimensional function and the surface equations are solved in a fixed Cartesian coordinate system using this new embedding function.

319 citations

Book ChapterDOI
TL;DR: In this article, a systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five-point band width, approximations to scalar conservation laws is presented.
Abstract: A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five-point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, we prove convergence to the unique physically correct solution. For hyperbolic systems of conservation laws, we formally use this construction to extend the first author’s first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.

317 citations

Journal ArticleDOI
TL;DR: This paper provides a survey on the recent development in level set methods in inverse problems and optimal design, and provides a review on numerical methods important in this context, and gives an overview of applications treated withlevel set methods.
Abstract: The aim of this paper is to provide a survey on the recent development in level set methods in inverse problems and optimal design. We give introductions on the general features of such problems involving geometries and on the general framework of the level set method. In subsequent parts we discuss shape sensitivity analysis and its relation to level set methods, various approaches on constructing optimization algorithms based on the level set approach, and special tools needed for the application of level set based optimization methods to ill-posed problems. Furthermore, we provide a review on numerical methods important in this context, and give an overview of applications treated with level set methods. Finally, we provide a discussion of the most challenging and interesting open problems in this field, that might be of interest for scientists who plan to start future research in this field.

291 citations

Journal ArticleDOI
TL;DR: This model is based on level set motion whose steady state is quickly reached by means of an explicit procedure based on Roe's scheme used in fluid dynamics and shows numerical evidence of the speed of resolution and stability of this simple explicit procedure.
Abstract: In this paper we formulate a time dependent model to approximate the solution to the nonlinear total variation optimization problem for deblurring and noise removal introduced by Rudin and Osher [ Total variation based image restoration with free local constraints, in Proceedings IEEE Internat. Conf. Imag. Proc., IEEE Press, Piscataway, NJ, (1994), pp. 31--35] and Rudin, Osher, and Fatemi [ Phys. D, 60 (1992), pp. 259--268], respectively. Our model is based on level set motion whose steady state is quickly reached by means of an explicit procedure based on Roe's scheme [ J. Comput. Phys., 43 (1981), pp. 357--372], used in fluid dynamics. We show numerical evidence of the speed of resolution and stability of this simple explicit procedure in some representative 1D and 2D numerical examples.

290 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations