scispace - formally typeset
Search or ask a question
Author

Stanley Osher

Bio: Stanley Osher is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Level set method & Hyperbolic partial differential equation. The author has an hindex of 114, co-authored 510 publications receiving 104028 citations. Previous affiliations of Stanley Osher include University of Minnesota & University of Innsbruck.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a real-space iterative reconstruction (RESIRE) algorithm was proposed for accurate tomographic reconstruction, which iterates between the update of a reconstructed 3D object and the measured projections using a forward and back projection step.
Abstract: Tomography has made a revolutionary impact on the physical, biological and medical sciences. The mathematical foundation of tomography is to reconstruct a three-dimensional (3D) object from a set of two-dimensional (2D) projections. As the number of projections that can be measured from a sample is usually limited by the tolerable radiation dose and/or the geometric constraint on the tilt range, a main challenge in tomography is to achieve the best possible 3D reconstruction from a limited number of projections with noise. Over the years, a number of tomographic reconstruction methods have been developed including direct inversion, real-space, and Fourier-based iterative algorithms. Here, we report the development of a real-space iterative reconstruction (RESIRE) algorithm for accurate tomographic reconstruction. RESIRE iterates between the update of a reconstructed 3D object and the measured projections using a forward and back projection step. The forward projection step is implemented by the Fourier slice theorem or the Radon transform, and the back projection step by a linear transformation. Our numerical and experimental results demonstrate that RESIRE performs more accurate 3D reconstructions than other existing tomographic algorithms, when there are a limited number of projections with noise. Furthermore, RESIRE can be used to reconstruct the 3D structure of extended objects as demonstrated by the determination of the 3D atomic structure of an amorphous Ta thin film. We expect that RESIRE can be widely employed in the tomography applications in different fields. Finally, to make the method accessible to the general user community, the MATLAB source code of RESIRE and all the simulated and experimental data are available at https://zenodo.org/record/7273314 .

3 citations

Proceedings ArticleDOI
24 Nov 2003
TL;DR: A new framework for object matching between two images is presented that could handle multiple pairs of overlapping and non-overlapping shapes, open curves, and landmarks and a general framework for linking the level set approach and the infinite dimensional group actions is discussed.
Abstract: In this paper, we present a new framework for object matching between two images. This method could handle multiple pairs of overlapping and non-overlapping shapes, open curves, and landmarks. When implemented in 3-D, the same framework could be used to warp 3-D objects with minimal modification. Our approach is to use the level set formulation to represent the objects to be matched. Using this representation, the problem becomes an energy minimization problem. Cost functions for warping overlapping, non-overlapping, open curves, and landmarks are proposed. Euler-Lagrange equations are applied and gradient descent is used to solve the corresponding partial differential equations. Moreover, a general framework for linking the level set approach and the infinite dimensional group actions is discussed.

3 citations

01 Jan 1985
TL;DR: In this article, the use of semi-Lagrangian advective schemes in meteorological modeling is discussed, along with high-resolution upwind schemes for hyperbolic equations.
Abstract: Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.

3 citations

Posted ContentDOI
TL;DR: In this article, the 3D atomic positions of amorphous solids have been determined using atomic electron tomography (AT) for the first time, using a multi-component metallic glass as a proof-of-principle.
Abstract: Amorphous solids such as glass are ubiquitous in our daily life and have found broad applications ranging from window glass and solar cells to telecommunications and transformer cores. However, due to the lack of long-range order, the three-dimensional (3D) atomic structure of amorphous solids have thus far defied any direct experimental determination without model fitting. Here, using a multi-component metallic glass as a proof-of-principle, we advance atomic electron tomography to determine the 3D atomic positions in an amorphous solid for the first time. We quantitatively characterize the short-range order (SRO) and medium-range order (MRO) of the 3D atomic arrangement. We find that although the 3D atomic packing of the SRO is geometrically disordered, some SRO connect with each other to form crystal-like networks and give rise to MRO. We identify four crystal-like MRO networks - face-centred cubic, hexagonal close-packed, body-centered cubic and simple cubic - coexisting in the sample, which show translational but no orientational order. These observations confirm that the 3D atomic structure in some parts of the sample is consistent with the efficient cluster packing model. Looking forward, we anticipate this experiment will open the door to determining the 3D atomic coordinates of various amorphous solids, whose impact on non-crystalline solids may be comparable to the first 3D crystal structure solved by x-ray crystallography over a century ago.

3 citations

Book ChapterDOI
01 Jan 2003
TL;DR: In this paper, the authors constructed signed distance functions by following characteristics that flow outward from the interface, and used the signed distance function to propagate information in the direction of these characteristics.
Abstract: In the last chapter we constructed signed distance functions by following characteristics that flow outward from the interface. Similar techniques can be used to propagate information in the direction of these characteristics. For example, $$ {S_t} + \overrightarrow N \cdot abla S = 0 $$ (8.1) is a Hamilton-Jacobi equation (in S) that extrapolates S normal to the interface, i.e. so that S is constant on rays normal to the interface. Since \( H\left( { abla S} \right) = \overrightarrow N \cdot abla S \), we can solve this equation with the techniques presented in Chapter 5 using H 1 = n1, H 2 = n2, and H 3 = n 3 .

3 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations