scispace - formally typeset
Search or ask a question
Author

Starck

Bio: Starck is an academic researcher from University of Surrey. The author has contributed to research in topics: Animation & Machine vision. The author has an hindex of 1, co-authored 1 publications receiving 174 citations.

Papers
More filters
Proceedings ArticleDOI
Starck1, Hilton1
13 Oct 2003
TL;DR: The technique demonstrates improved scene reconstruction in the presence of visual ambiguities and provides the means to capture a dynamic scene with a consistent model that is instrumented with an animation structure to edit the scene dynamics or to synthesise new content.
Abstract: This paper presents a framework to reconstruct a scene captured in multiple camera views based on a prior model of the scene geometry. The framework is applied to the capture of animated models of people. A multiple camera studio is used to simultaneously capture a moving person from multiple viewpoints. A humanoid computer graphics model is animated to match the pose at each time frame. Constrained optimisation is then used to recover the multiple view correspondence from silhouette, stereo and feature cues, updating the geometry and appearance of the model. The key contribution of this paper is a model-based computer vision framework for the reconstruction of shape and appearance from multiple views. This is compared to current model-free approaches for multiple view scene capture. The technique demonstrates improved scene reconstruction in the presence of visual ambiguities and provides the means to capture a dynamic scene with a consistent model that is instrumented with an animation structure to edit the scene dynamics or to synthesise new content.

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.
Abstract: This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 [T.B. Moeslund, E. Granum, A survey of computer vision-based human motion capture, Computer Vision and Image Understanding, 81(3) (2001) 231-268.]. Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant research advances are identified together with novel methodologies for automatic initialization, tracking, pose estimation, and movement recognition. Recent research has addressed reliable tracking and pose estimation in natural scenes. Progress has also been made towards automatic understanding of human actions and behavior. This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.

2,738 citations

Journal ArticleDOI
20 Jul 2017
TL;DR: In this paper, a fully-convolutional pose formulation was proposed to regress 2D and 3D joint positions jointly in real-time and does not require tightly cropped input frames.
Abstract: We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e., it works for outdoor scenes, community videos, and low quality commodity RGB cameras.

859 citations

Journal ArticleDOI
TL;DR: This work presents the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera and shows that the approach is more broadly applicable than RGB-D solutions, i.e., it works for outdoor scenes, community videos, and low quality commodity RGB cameras.
Abstract: We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e. it works for outdoor scenes, community videos, and low quality commodity RGB cameras.

644 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this article, a CNN-based approach for 3D human body pose estimation from single RGB images is proposed to address the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data.
Abstract: We propose a CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. Using only the existing 3D pose data and 2D pose data, we show state-of-the-art performance on established benchmarks through transfer of learned features, while also generalizing to in-the-wild scenes. We further introduce a new training set for human body pose estimation from monocular images of real humans that has the ground truth captured with a multi-camera marker-less motion capture system. It complements existing corpora with greater diversity in pose, human appearance, clothing, occlusion, and viewpoints, and enables an increased scope of augmentation. We also contribute a new benchmark that covers outdoor and indoor scenes, and demonstrate that our 3D pose dataset shows better in-the-wild performance than existing annotated data, which is further improved in conjunction with transfer learning from 2D pose data. All in all, we argue that the use of transfer learning of representations in tandem with algorithmic and data contributions is crucial for general 3D body pose estimation.

620 citations

Posted Content
TL;DR: A CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data is proposed.
Abstract: We propose a CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. Using only the existing 3D pose data and 2D pose data, we show state-of-the-art performance on established benchmarks through transfer of learned features, while also generalizing to in-the-wild scenes. We further introduce a new training set for human body pose estimation from monocular images of real humans that has the ground truth captured with a multi-camera marker-less motion capture system. It complements existing corpora with greater diversity in pose, human appearance, clothing, occlusion, and viewpoints, and enables an increased scope of augmentation. We also contribute a new benchmark that covers outdoor and indoor scenes, and demonstrate that our 3D pose dataset shows better in-the-wild performance than existing annotated data, which is further improved in conjunction with transfer learning from 2D pose data. All in all, we argue that the use of transfer learning of representations in tandem with algorithmic and data contributions is crucial for general 3D body pose estimation.

521 citations