scispace - formally typeset
Search or ask a question
Author

Stav Yagev

Bio: Stav Yagev is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Distortion (mathematics) & Iterative and incremental development. The author has an hindex of 1, co-authored 2 publications receiving 43 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work considers the problem of finding a geometrically consistent set of point matches between two images and formulate this as a constrained optimization problem and solves it using a constrained, iterative reweighted least-squares algorithm.
Abstract: We consider the problem of finding a geometrically consistent set of point matches between two images. We assume that local descriptors have provided a set of candidate matches, which may include many outliers. We then seek the largest subset of these correspondences that can be aligned perfectly using a nonrigid deformation that exerts a bounded distortion. We formulate this as a constrained optimization problem and solve it using a constrained, iterative reweighted least-squares algorithm. In each iteration of this algorithm we solve a convex quadratic program obtaining a globally optimal match over a subset of the bounded distortion transformations. We further prove that a sequence of such iterations converges monotonically to a critical point of our objective function. We show experimentally that this algorithm produces excellent results on a number of test sets, in comparison to several state-of-the-art approaches.

54 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: A multiscale approach for minimizing the energy associated with Markov Random Fields with energy functions that include arbitrary pairwise potentials, which is evaluated on real-world datasets, achieving competitive performance in relatively short run-times.
Abstract: We present a multiscale approach for minimizing the energy associated with Markov Random Fields (MRFs) with energy functions that include arbitrary pairwise potentials. The MRF is represented on a hierarchy of successively coarser scales, where the problem on each scale is itself an MRF with suitably defined potentials. These representations are used to construct an efficient multiscale algorithm that seeks a minimal-energy solution to the original problem. The algorithm is iterative and features a bidirectional crosstalk between fine and coarse representations. We use consistency criteria to guarantee that the energy is nonincreasing throughout the iterative process. The algorithm is evaluated on real-world datasets, achieving competitive performance in relatively short run-times.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey introduces feature detection, description, and matching techniques from handcrafted methods to trainable ones and provides an analysis of the development of these methods in theory and practice, and briefly introduces several typical image matching-based applications.
Abstract: As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been proposed for image matching, particularly with the development of deep learning techniques over the recent years. However, it may leave several open questions about which method would be a suitable choice for specific applications with respect to different scenarios and task requirements and how to design better image matching methods with superior performance in accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection, description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive and objective comparison of these classical and latest techniques through extensive experiments on representative datasets. Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching and related fields.

474 citations

Journal ArticleDOI
TL;DR: The authors' method can accomplish the mismatch removal from thousands of putative correspondences in only a few milliseconds, and achieves better or favorably competitive performance in accuracy while intensively cutting time cost by more than two orders of magnitude.
Abstract: Seeking reliable correspondences between two feature sets is a fundamental and important task in computer vision. This paper attempts to remove mismatches from given putative image feature correspondences. To achieve the goal, an efficient approach, termed as locality preserving matching (LPM), is designed, the principle of which is to maintain the local neighborhood structures of those potential true matches. We formulate the problem into a mathematical model, and derive a closed-form solution with linearithmic time and linear space complexities. Our method can accomplish the mismatch removal from thousands of putative correspondences in only a few milliseconds. To demonstrate the generality of our strategy for handling image matching problems, extensive experiments on various real image pairs for general feature matching, as well as for point set registration, visual homing and near-duplicate image retrieval are conducted. Compared with other state-of-the-art alternatives, our LPM achieves better or favorably competitive performance in accuracy while intensively cutting time cost by more than two orders of magnitude.

416 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: GMS (Grid-based Motion Statistics), a simple means of encapsulating motion smoothness as the statistical likelihood of a certain number of matches in a region, enables translation of high match numbers into high match quality.
Abstract: Incorporating smoothness constraints into feature matching is known to enable ultra-robust matching. However, such formulations are both complex and slow, making them unsuitable for video applications. This paper proposes GMS (Grid-based Motion Statistics), a simple means of encapsulating motion smoothness as the statistical likelihood of a certain number of matches in a region. GMS enables translation of high match numbers into high match quality. This provides a real-time, ultra-robust correspondence system. Evaluation on videos, with low textures, blurs and wide-baselines show GMS consistently out-performs other real-time matchers and can achieve parity with more sophisticated, much slower techniques.

356 citations

Journal ArticleDOI
TL;DR: This paper model the shape variations with a Gaussian process, which they represent using the leading components of its Karhunen-Loève expansion, and introduces a simple algorithm for fitting a GPMM to a surface or image, which results in a non-rigid registration approach whose regularization properties are defined by a G PMM.
Abstract: Models of shape variations have become a central component for the automated analysis of images. An important class of shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a low-dimensional representation of the shape variation in terms of the leading principal components. In this paper, we propose a generalization of PDMs, which we refer to as Gaussian Process Morphable Models (GPMMs). We model the shape variations with a Gaussian process, which we represent using the leading components of its Karhunen-Loeve expansion. To compute the expansion, we make use of an approximation scheme based on the Nystrom method. The resulting model can be seen as a continuous analog of a standard PDM. However, while for PDMs the shape variation is restricted to the linear span of the example data, with GPMMs we can define the shape variation using any Gaussian process. For example, we can build shape models that correspond to classical spline models and thus do not require any example data. Furthermore, Gaussian processes make it possible to combine different models. For example, a PDM can be extended with a spline model, to obtain a model that incorporates learned shape characteristics but is flexible enough to explain shapes that cannot be represented by the PDM. We introduce a simple algorithm for fitting a GPMM to a surface or image. This results in a non-rigid registration approach whose regularization properties are defined by a GPMM. We show how we can obtain different registration schemes, including methods for multi-scale or hybrid registration, by constructing an appropriate GPMM. As our approach strictly separates modeling from the fitting process, this is all achieved without changes to the fitting algorithm. To demonstrate the applicability and versatility of GPMMs, we perform a set of experiments in typical usage scenarios in medical image analysis and computer vision: The model-based segmentation of 3D forearm images and the building of a statistical model of the face. To complement the paper, we have made all our methods available as open source.

157 citations

Journal ArticleDOI
TL;DR: This survey provides a comprehensive review of multimodal image matching methods from handcrafted to deep methods for each research field according to their imaging nature, including medical, remote sensing and computer vision.

155 citations