scispace - formally typeset
Search or ask a question
Author

Stavroula Foteinopoulou

Bio: Stavroula Foteinopoulou is an academic researcher from United States Department of Energy. The author has contributed to research in topics: Polarization (waves) & Total external reflection. The author has an hindex of 1, co-authored 1 publications receiving 606 citations.

Papers
More filters
Journal ArticleDOI
05 Jun 2003-Nature
TL;DR: This experimental verification of negative refraction of electromagnetic waves in a two-dimensional dielectric photonic crystal that has a periodically modulated positive permittivity and a permeability of unity is demonstrated.
Abstract: Materials that can bend light in the opposite direction to normal ('left-handed' materials) reverse the way in which refraction usually works — this negative refractive index is due to simultaneously negative permeability and permittivity1,2,3. Here we demonstrate negative refraction of electromagnetic waves in a two-dimensional dielectric photonic crystal that has a periodically modulated positive permittivity and a permeability of unity4,5,6. This experimental verification of negative refraction is a step towards the realization of a 'superlens' that will be able to focus features smaller than the wavelength of light.

635 citations


Cited by
More filters
Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
06 Aug 2004-Science
TL;DR: Recent advances in metamaterials research are described and the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena is discussed.
Abstract: Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.

3,893 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: The introduction of a single chiral resonance leads to negative refraction of one polarization, resulting in improved and simplified designs of negatively refracting materials and opening previously unknown avenues of investigation in this fast-growing subject.
Abstract: Negative refraction is currently achieved by driving the magnetic permeability and electrical permittivity simultaneously negative, thus requiring two separate resonances in the refracting material. The introduction of a single chiral resonance leads to negative refraction of one polarization, resulting in improved and simplified designs of negatively refracting materials and opening previously unknown avenues of investigation in this fast-growing subject.

1,522 citations

Journal ArticleDOI
TL;DR: The physics of such superlenses and the theoretical and experimental progress in this rapidly developing field ofificially engineered metamaterials are reviewed.
Abstract: The resolution of conventional optical instruments is limited to length scales of roughly the wavelength of the light used. Nanoscale superlenses offer a solution for achieving much higher resolutions that may find appllications in many imaging areas.

1,234 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamental concepts and ideas of negative refractive index materials and present the ideas of meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability, and negative fringes.
Abstract: In the past few years, new developments in structured electromagnetic materials have given rise to negative refractive index materials which have both negative dielectric permittivity and negative magnetic permeability in some frequency ranges. The idea of a negative refractive index opens up new conceptual frontiers in photonics. One much-debated example is the concept of a perfect lens that enables imaging with sub-wavelength image resolution. Here we review the fundamental concepts and ideas of negative refractive index materials. First we present the ideas of structured materials or meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability and negative refractive index. We discuss how a variety of resonance phenomena can be utilized to obtain these materials in various frequency ranges over the electromagnetic spectrum. The choice of the wave-vector in negative refractive index materials and the issues of dispersion, causality and energy transport are analysed. Various issues of wave propagation including nonlinear effects and surface modes in negative refractive materials (NRMs) are discussed. In the latter part of the review, we discuss the concept of a perfect lens consisting of a slab of a NRM. This perfect lens can image the far-field radiative components as well as the nearfield evanescent components, and is not subject to the traditional diffraction limit. Different aspects of this lens such as the surface modes acting as the mechanism for the imaging of the evanescent waves, the limitations imposed by dissipation and dispersion in the negative refractive media, the generalization of this lens to optically complementary media and the possibility of magnification of the near-field images are discussed. Recent experimental developments verifying these ideas are briefly covered. (Some figures in this article are in colour only in the electronic version)

867 citations