scispace - formally typeset
Search or ask a question
Author

Steen Mørup

Bio: Steen Mørup is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Superparamagnetism & Magnetization. The author has an hindex of 51, co-authored 279 publications receiving 11787 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropic properties, such as magnetic hyperfine fields.
Abstract: Nanoparticles of metallic iron on carbon supports have been studied insitu by use of M\"ossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation of a surface layer with magnetic hyperfine fields similar to those of thicker passivation layers, and with a ferromagnetic coupling to the spins in the core of the particles. In contrast, thicker passivation layers have a noncollinear spin structure.

648 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and type of phases present in sulfided alumina-supported, as well as unsupported, Co-Mo catalysts is obtained from in situ Mossbauer emission spectroscopy (MES) studies.

563 citations

Journal ArticleDOI
TL;DR: In this article, a series of sulfided Co-Mo Al 2 O 3 catalysts with different Co Mo ratios but with constant molybdenum content was investigated, and it was shown that the relative amounts of the three phases depend strongly on the Co Mo ratio.

354 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the pre-exponential factor for the superparamagnetic relaxation time in the presence of an electric field gradient in accordance with the Blume-Tjon model from simultaneous fitting to ac and dc magnetization curves.
Abstract: The magnetic properties of hematite $(\ensuremath{\alpha}\ensuremath{-}{\mathrm{Fe}}_{2}{\mathrm{O}}_{3})$ particles with sizes of about 16 nm have been studied by use of M\"ossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At $T\ensuremath{\gtrsim}100\mathrm{K}$ the M\"ossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model. Simultaneous fitting of series of M\"ossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in N\'eel's expression for the superparamagnetic relaxation time, ${\ensuremath{\tau}}_{0}=(6\ifmmode\pm\else\textpm\fi{}4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}11}\mathrm{s}$ and the magnetic anisotropy energy barrier, ${E}_{\mathrm{bm}}{/k=590}_{\ensuremath{-}120}^{+150}\mathrm{K}.$ A lower value of the pre-exponential factor, ${\ensuremath{\tau}}_{0}{=1.8}_{\ensuremath{-}1.3}^{+3.2}\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}11}\mathrm{s},$ and a significantly lower anisotropy energy barrier ${E}_{\mathrm{bm}}^{\mathrm{magn}}/k=305\ifmmode\pm\else\textpm\fi{}20\mathrm{K}$ was derived from simultaneous fitting to ac and dc magnetization curves. The difference in the observed energy barriers can be explained by the presence of two different modes of superparamagnetic relaxation which are characteristic of the weakly ferromagnetic phase. One mode involves a rotation of the sublattice magnetization directions in the basal (111) plane, which gives rise to superparamagnetic behavior in both M\"ossbauer spectroscopy and magnetization measurements. The other mode involves a fluctuation of the net magnetization direction out of the basal plane, which mainly affects the magnetization measurements.

341 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: In this article, solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤ 5%, are presented.
Abstract: ▪ Abstract Solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤5%, are presented. Preparation of monodisperse samples enables systematic characterization of the structural, electronic, and optical properties of materials as they evolve from molecular to bulk in the nanometer size range. Sample uniformity makes it possible to manipulate nanocrystals into close-packed, glassy, and ordered nanocrystal assemblies (superlattices, colloidal crystals, supercrystals). Rigorous structural characterization is critical to understanding the electronic and optical properties of both nanocrystals and their assemblies. At inter-particle separations 5–100 A, dipole-dipole interactions lead to energy transfer between neighboring nanocrystals, and electronic tunneling between proximal nanocrystals gives rise to dark and photoconductivity. At separations <5 A, exchange interactions cause otherwise insulating ass...

4,116 citations

Book
28 Sep 2004
TL;DR: Mechanical Alloying (MA) is a solid-state powder processng technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill as mentioned in this paper.
Abstract: Mechanical alloying (MA) is a solid-state powder processng technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from blended elemental or prealloyed powders. The non-equilibrium phases synthesized include supersaturated solid solutions, metastable crystalline and quasicrystalline phases, nanostructures, and amorphous alloys. Recent advances in these areas and also on disordering of ordered intermetallics and mechanochemical synthesis of materials have been critically reviewed after discussing the process and process variables involved in MA. The often vexing problem of powder contamination has been analyzed and methods have been suggested to avoid/minimize it. The present understanding of the modeling of the MA process has also been discussed. The present and potential applications of MA are described. Wherever possible, comparisons have been made on the product phases obtained by MA with those of rapid solidification processing, another non-equilibrium processing technique.

3,773 citations

Journal ArticleDOI
Shouheng Sun1, Hao Zeng1, David B. Robinson1, Simone Raoux1, Philip M. Rice1, Shan X. Wang1, Guanxiong Li1 
TL;DR: As-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD and can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made.
Abstract: High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)3, with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe3O4) nanoparticles. Similarly, reaction of Fe(acac)3 and Co(acac)2 or Mn(acac)2 with the same diol results in monodisperse CoFe2O4 or MnFe2O4 nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe3O4 can be oxidized to Fe2O3, as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.

3,244 citations