scispace - formally typeset
Search or ask a question
Author

Steephen Prince

Bio: Steephen Prince is an academic researcher. The author has contributed to research in topics: Land degradation & Ecosystem services. The author has an hindex of 1, co-authored 1 publications receiving 177 citations.


Cited by
More filters
Journal ArticleDOI
13 Dec 2019-Science
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
Abstract: The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.

913 citations

Journal ArticleDOI
TL;DR: It is discovered that the number of zoonotic viruses detected in mammalian species scales positively with global species abundance, suggesting that virus transmission risk has been highest from animal species that have increased in abundance and even expanded their range by adapting to human-dominated landscapes.
Abstract: Emerging infectious diseases in humans are frequently caused by pathogens originating from animal hosts, and zoonotic disease outbreaks present a major challenge to global health. To investigate drivers of virus spillover, we evaluated the number of viruses mammalian species have shared with humans. We discovered that the number of zoonotic viruses detected in mammalian species scales positively with global species abundance, suggesting that virus transmission risk has been highest from animal species that have increased in abundance and even expanded their range by adapting to human-dominated landscapes. Domesticated species, primates and bats were identified as having more zoonotic viruses than other species. Among threatened wildlife species, those with population reductions owing to exploitation and loss of habitat shared more viruses with humans. Exploitation of wildlife through hunting and trade facilitates close contact between wildlife and humans, and our findings provide further evidence that exploitation, as well as anthropogenic activities that have caused losses in wildlife habitat quality, have increased opportunities for animal-human interactions and facilitated zoonotic disease transmission. Our study provides new evidence for assessing spillover risk from mammalian species and highlights convergent processes whereby the causes of wildlife population declines have facilitated the transmission of animal viruses to humans.

259 citations

Journal ArticleDOI
06 Mar 2020-bioRxiv
TL;DR: This work generates the first globally-consistent, continuous index of forest condition as determined by degree of anthropogenic modification, by integrating data on observed and inferred human pressures and an index of lost connectivity.
Abstract: Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally.

141 citations

Journal ArticleDOI
TL;DR: A globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification is generated by integrating data on observed and inferred human pressures and an index of lost connectivity.
Abstract: Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally.

133 citations

Journal ArticleDOI
TL;DR: The authors find that over the past 40 years climate change has pushed ~13% of drylands towards desertification threatening hundreds of millions of people in developing nations.
Abstract: Drylands cover 41% of the earth's land surface and include 45% of the world's agricultural land. These regions are among the most vulnerable ecosystems to anthropogenic climate and land use change and are under threat of desertification. Understanding the roles of anthropogenic climate change, which includes the CO2 fertilization effect, and land use in driving desertification is essential for effective policy responses but remains poorly quantified with methodological differences resulting in large variations in attribution. Here, we perform the first observation-based attribution study of desertification that accounts for climate change, climate variability, CO2 fertilization as well as both the gradual and rapid ecosystem changes caused by land use. We found that, between 1982 and 2015, 6% of the world's drylands underwent desertification driven by unsustainable land use practices compounded by anthropogenic climate change. Despite an average global greening, anthropogenic climate change has degraded 12.6% (5.43 million km2) of drylands, contributing to desertification and affecting 213 million people, 93% of who live in developing economies.

125 citations