scispace - formally typeset
Search or ask a question
Author

Stefan Grubic

Bio: Stefan Grubic is an academic researcher from General Electric. The author has contributed to research in topics: Catastrophic failure & Switched reluctance motor. The author has an hindex of 14, co-authored 29 publications receiving 912 citations. Previous affiliations of Stefan Grubic include GE Energy Infrastructure & Georgia Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: An in-depth literature review of testing and monitoring methods that diagnose the condition of the turn-to-turn insulation of low-voltage machines, which is a rapidly expanding area for both research and product development efforts.
Abstract: A breakdown of the electrical insulation system causes catastrophic failure of the electrical machine and brings large process downtime losses. To determine the conditions of the stator insulation system of motor drive systems, various testing and monitoring methods have been developed. This paper presents an in-depth literature review of testing and monitoring methods, categorizing them into online and offline methods, each of which is further grouped into specific areas according to their physical nature. The main focus of this paper is on testing and monitoring techniques that diagnose the condition of the turn-to-turn insulation of low-voltage machines, which is a rapidly expanding area for both research and product development efforts. In order to give a compact overview, the results are summarized in two tables. In addition to monitoring methods on turn-to-turn insulation, some of the most common methods to assess the stator's phase-to-ground and phase-to-phase insulation conditions are included in the tables as well.

438 citations

Journal ArticleDOI
TL;DR: This paper will assess the potential of different variants of flux-switching machines (FSMs) that either reduce or eliminate rare-earth materials in the context of traction applications.
Abstract: There has been growing interest in electrical machines that reduce or eliminate rare-earth material content. Traction applications are among the key applications where reducing cost and, hence, reduction of rare-earth materials are key requirements. This paper will assess the potential of different variants of flux-switching machines (FSMs) that either reduce or eliminate rare-earth materials in the context of traction applications. Two designs use different grades of dysprosium-free permanent magnets (PMs), and the third design is a wound-field variant that does not include PMs at all. A detailed analysis of all three designs in comparison to the required set of specifications will be presented. The key opportunities and challenges will be highlighted. The impact of the high pole-count/frequency of the FSMs will also be evaluated. Experimental results for one of the designs with dysprosium-free PMs will also be presented.

79 citations

Proceedings ArticleDOI
13 Nov 2014
TL;DR: In this paper, the potential of different variants of flux-switching machines (FSMs) that either reduce or eliminate rare-earth materials in the context of traction applications is assessed.
Abstract: There has been growing interest in electrical machines that reduce or eliminate rare-earth material content. Traction applications are among the key applications where reducing cost and, hence, reduction of rare-earth materials are key requirements. This paper will assess the potential of different variants of flux-switching machines (FSMs) that either reduce or eliminate rare-earth materials in the context of traction applications. Two designs use different grades of dysprosium-free permanent magnets (PMs), and the third design is a wound-field variant that does not include PMs at all. A detailed analysis of all three designs in comparison to the required set of specifications will be presented. The key opportunities and challenges will be highlighted. The impact of the high pole-count/frequency of the FSMs will also be evaluated. Experimental results for one of the designs with dysprosium-free PMs will also be presented.

73 citations

Journal ArticleDOI
TL;DR: A new flux-estimation algorithm that uses the phase current derivative to extract the flux-position information and requires only fundamental-wave excitation using standard PWM or slightly modified PWM, making it possible to use sensorless control for the whole speed range including overmodulation.
Abstract: The sensorless control of induction machines, particularly for operation at low speed, has received significant attention in recent years. To realize a field-oriented control of AC machines that is able to work at zero speed, the most commonly used methods are either sensor-based models or transient-signal-excitation methods. The major disadvantage of present signal-injection methods is that they are intrusive to pulsewidth modulation (PWM). An additional switching sequence has to be embedded in the control that will cause a torque and current ripple. In order to overcome these problems, a new flux-estimation algorithm that uses the phase current derivative to extract the flux-position information is presented. In contrast to previously introduced methods, this new approach operates without additional transient excitation of the machine and requires only fundamental-wave excitation using standard PWM or slightly modified PWM. Furthermore, only the current response in the two active states of PWM is used. This makes it possible to use sensorless control for the whole speed range including overmodulation and removes the distortion and parasitic influence of the zero switching states during the estimation of the flux. Experimental results are presented to validate the applicability of the presented approach.

72 citations

Journal ArticleDOI
TL;DR: This paper shows the system topology, analyzes the components of the testbed, and presents the experimental results that verify the feasibility and capability of the method proposed.
Abstract: In modern drive systems, inverters are a fundamental component. To improve the performance of this component, ensure their operability, and check their reliability, motor-load testbeds are used during the process of development. Unfortunately, there are several drawbacks and disadvantages inherent to conventional motor-load testbeds. In order to avoid these problems, a new concept for a hardware-in-the-loop-based electronic testbed has been developed. A well-defined second inverter in combination with a mathematical model of the machine-load combination is used to replace the conventional test setup. Different machine-load combinations can be easily simulated with one system by simply changing the mathematical models. This paper shows the system topology, analyzes the components of the testbed, and presents the experimental results that verify the feasibility and capability of the method proposed.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault is presented.
Abstract: The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications.

1,255 citations

Journal ArticleDOI
TL;DR: The fault diagnosis of rotating electrical machines has received an intense amount of research interest during the last 30 years as discussed by the authors, and this topic has become far more attractive and critical as the population of electric machines has greatly increased in recent years.
Abstract: The fault diagnosis of rotating electrical machines has received an intense amount of research interest during the last 30 years. Reducing maintenance costs and preventing unscheduled downtimes, which result in losses of production and financial incomes, are the priorities of electrical drives manufacturers and operators. In fact, both correct diagnosis and early detection of incipient faults lead to fast unscheduled maintenance and short downtime for the process under consideration. They also prevent the harmful and sometimes devastating consequences of faults and failures. This topic has become far more attractive and critical as the population of electric machines has greatly increased in recent years. The total number of operating electrical machines in the world was around 16.1 billion in 2011, with a growth rate of about 50% in the last five years [1].

473 citations

Journal ArticleDOI
TL;DR: A review of existing techniques available for online stator interturn fault detection and diagnosis (FDD) in electrical machines, with special attention to short-circuit-fault diagnosis in permanent-magnet machines, which are fast replacing traditional machines in a wide variety of applications.
Abstract: Online fault diagnosis plays a crucial role in providing the required fault tolerance to drive systems used in safety-critical applications. Short-circuit faults are among the common faults occurring in electrical machines. This paper presents a review of existing techniques available for online stator interturn fault detection and diagnosis (FDD) in electrical machines. Special attention is given to short-circuit-fault diagnosis in permanent-magnet machines, which are fast replacing traditional machines in a wide variety of applications. Recent techniques that use signals analysis, models, or knowledge-based systems for FDD are reviewed in this paper. Motor current is the most commonly analyzed signal for fault diagnosis. Hence, motor current signature analysis is a topic of elaborate discussion in this paper. Additionally, parametric and finite-element models that were designed to simulate interturn-fault conditions are reviewed.

468 citations

Journal ArticleDOI
TL;DR: The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 1970s, ranging from trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal processing, and so on.
Abstract: The Kalman filter (KF) has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 1970s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal processing, and so on. This paper provides a brief overview of the industrial applications and implementation issues of the KF in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends.

428 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey on the state-of-the-art condition monitoring and fault diagnostic technologies for wind turbines (WTs) and discusses the common failure modes in the major WT components and subsystems.
Abstract: This paper provides a comprehensive survey on the state-of-the-art condition monitoring and fault diagnostic technologies for wind turbines (WTs). The Part I of this survey briefly reviews the existing literature surveys on the subject, discusses the common failure modes in the major WT components and subsystems, briefly reviews the condition monitoring and fault diagnostic techniques for these components and subsystems, and specifically discusses the issues of condition monitoring and fault diagnosis for offshore WTs.

402 citations