scispace - formally typeset
Search or ask a question
Author

Stefan Kaiser

Other affiliations: German Aerospace Center
Bio: Stefan Kaiser is an academic researcher from NTT DoCoMo. The author has contributed to research in topics: Orthogonal frequency-division multiplexing & Code division multiple access. The author has an hindex of 21, co-authored 65 publications receiving 3116 citations. Previous affiliations of Stefan Kaiser include German Aerospace Center.


Papers
More filters
Book
14 Nov 2003
TL;DR: In this paper, the authors provide an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmission, and present numerous hybrid access and air interface architectures including OFDM/CDMA, MC-CDMA and MT-CDMAC over new techniques such as space-time coding and software radio.
Abstract: From the Publisher: Frequency spectrum is a limited and valuable resource for wireless communications. A good example can be observed among network operators in Europe for the prices to pay for UMTS-frequency bands. Therefore, the first goal when designing future wireless communication systems (e.g. 4G - fourth generation) has to be the increase in spectral efficiency. The development in digital communications in the past years has enabled efficient modulation and coding techniques for robust and spectral efficient data, speech, audio and video transmission. These are the multi-carrier modulation (e.g. OFDM) and the spread spectrum technique (e.g. DS-CDMA), where OFDM was chosen for broadcast applications (DVB, DAB) as well as for broadband wireless indoor standards (ETSI HIPERLAN-II, IEEE-802.11) and the DS-CDMA was selected in mobile communications (IS-95, third generation mobile radio systems world wide, UMTS/IMT 2000). Since 1993 various combinations of multi-carrier (MC) modulation and the spread spectrum (SS) technique have been introduced and the field of MC-SS communications has become an independent and important research topic with increasing activities. New application fields have been proposed such as high rate cellular mobile, high rate wireless indoor and LMDS. It has been shown that MC-SS offers the high spectral efficiency, robustness and flexibility that is required for the next generation systems. Meanwhile, different alternative hybrid schemes such as OFDM/OFDMA, MC-TDMA, etc. have been deeply analysed and adopted in different international standards (ETSI-BRAN, IEEE-802 & MMAC). Multi-Carrier & Spread-Spectrum: Analysis of Hybrid Air Interfaces draws together all ofthe above mentioned hybrid schemes therefore providing a greatly needed resource for system engineers, telecommunication designers and researchers in order to enable them to develop, build and deploy several schemes based on MC-transmission for the next generation systems (which will be an integration of broadband multimedia services covering both 4G mobile and fixed wireless systems). Offers a complete treatment of multi-carrier, spread-spectrum (SS) and time division multiplexing (TDM) techniquesProvides an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmissionPresents numerous hybrid multiple access and air interface architectures including OFDM/CDMA, MC-CDMA, MC-DS-CDMA and MT-CDMACovers new techniques such as space-time coding and software radio Telecommunications engineers, hardware & software system designers and researchers as well as students, lecturers and technicians will all find this an invaluable addition to their bookshelf.

886 citations

Book ChapterDOI
14 Aug 1997
TL;DR: Filtering in two dimensions is revealed to outperform filtering in just one dimension with respect to overhead, mean-square error performance and latency.
Abstract: The potentials of pilot-symbol-aided channel estimation in two dimensions are explored for mobile radio and broadcasting applications. In order to procure this goal, the discrete shift-variant 2-D Wiener filter is analyzed given an arbitrary sampling grid, an arbitrary (but possibly optimized) selection of observations, and the possibility of model mismatch. Filtering in two dimensions is revealed to outperform filtering in just one dimension with respect to overhead, mean-square error performance and latency. Conceptually, the discrete shiftvariant 2-D Wiener filter is the optimal linear estimator for the given problem, however, two cascaded orthogonal 1-D filters are simpler to implement and virtually as good as true 2-D filters. Analytical results are presented, verified by Monte-Carlo simulations.

282 citations

Proceedings ArticleDOI
25 Nov 2001
TL;DR: Different antenna diversity concepts, which can be easily applied to orthogonal frequency division multiplexing (OFDM) systems, are investigated and applied to the DVB-T system for error performance investigations.
Abstract: In this paper, we investigate different antenna diversity concepts, which can be easily applied to orthogonal frequency division multiplexing (OFDM) systems. The focus is to provide diversity schemes, which can be implemented to already existing OFDM systems without changing the standards. It is also possible to combine these techniques in a suitable manner. The introduced diversity techniques are applied to the DVB-T system for error performance investigations, which were done by simulation.

217 citations

Journal ArticleDOI
TL;DR: It can be shown that OFDM-CDM outperforms conventional OFDM with respect to bit error rate (BER) performance and bandwidth efficiency.
Abstract: In this paper, orthogonal frequency-division multiplexing-code-division multiplexing (OFDM-CDM) is presented and investigated as alternative to conventional OFDM for high rate data transmission. An additional multipath diversity gain can be obtained with OFDM-CDM by spreading each data symbol in frequency and time. The optimum reliability information for the Viterbi (1979) decoder is derived for OFDM-CDM systems, and the tradeoff between spreading and channel coding in OFDM systems is presented. By using efficient interference cancellation or joint detection techniques, it can be shown that OFDM-CDM outperforms conventional OFDM with respect to bit error rate (BER) performance and bandwidth efficiency.

202 citations

Patent
17 Nov 1997
TL;DR: In this paper, the authors proposed an optimum combination of multi-carrier modulation with the spread-spectrum technique for both the upstream and downlinks in future cellular mobile-radio systems, where the data of a subscriber station are transmitted to a partial quantity of subcarriers in the frequency band, with the partial quantity associated with the individual subscriber stations being disjunct and distributed over the entire transmission band.
Abstract: The method of the invention is based on an optimum combination of multi-carrier modulation with the spread-spectrum technique. The data of a subscriber station are spread, with the data of a subscriber station being modulated on a set of orthogonal spread sequences and superimposed. The data of a subscriber station are transmitted to a partial quantity of subcarriers in the frequency band, with the partial quantity of sub-carriers associated with the individual subscriber stations being disjunct and distributed over the entire transmission band. A channel estimation required for receiving-side data detection is performed by means of filtering in the time and/or frequency direction of reference symbols. A low-complexity maximum-likelihood sequence estimation is possible for data detection. The method of the invention is well-suited for use for both the upstream and downlinks in future cellular mobile-radio systems.

199 citations


Cited by
More filters
Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
08 Nov 2004
TL;DR: The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in M IMO- OFDM systems.
Abstract: Orthogonal frequency division multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-varying and frequency-selective channels, resulting in a multiple-input multiple-output (MIMO) configuration. The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, space-time techniques for MIMO-OFDM, error control coding techniques, OFDM preamble and packet design, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in MIMO-OFDM systems. Finally, the paper considers a software radio implementation of MIMO-OFDM.

1,475 citations

Book
14 Nov 2003
TL;DR: In this paper, the authors provide an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmission, and present numerous hybrid access and air interface architectures including OFDM/CDMA, MC-CDMA and MT-CDMAC over new techniques such as space-time coding and software radio.
Abstract: From the Publisher: Frequency spectrum is a limited and valuable resource for wireless communications. A good example can be observed among network operators in Europe for the prices to pay for UMTS-frequency bands. Therefore, the first goal when designing future wireless communication systems (e.g. 4G - fourth generation) has to be the increase in spectral efficiency. The development in digital communications in the past years has enabled efficient modulation and coding techniques for robust and spectral efficient data, speech, audio and video transmission. These are the multi-carrier modulation (e.g. OFDM) and the spread spectrum technique (e.g. DS-CDMA), where OFDM was chosen for broadcast applications (DVB, DAB) as well as for broadband wireless indoor standards (ETSI HIPERLAN-II, IEEE-802.11) and the DS-CDMA was selected in mobile communications (IS-95, third generation mobile radio systems world wide, UMTS/IMT 2000). Since 1993 various combinations of multi-carrier (MC) modulation and the spread spectrum (SS) technique have been introduced and the field of MC-SS communications has become an independent and important research topic with increasing activities. New application fields have been proposed such as high rate cellular mobile, high rate wireless indoor and LMDS. It has been shown that MC-SS offers the high spectral efficiency, robustness and flexibility that is required for the next generation systems. Meanwhile, different alternative hybrid schemes such as OFDM/OFDMA, MC-TDMA, etc. have been deeply analysed and adopted in different international standards (ETSI-BRAN, IEEE-802 & MMAC). Multi-Carrier & Spread-Spectrum: Analysis of Hybrid Air Interfaces draws together all ofthe above mentioned hybrid schemes therefore providing a greatly needed resource for system engineers, telecommunication designers and researchers in order to enable them to develop, build and deploy several schemes based on MC-transmission for the next generation systems (which will be an integration of broadband multimedia services covering both 4G mobile and fixed wireless systems). Offers a complete treatment of multi-carrier, spread-spectrum (SS) and time division multiplexing (TDM) techniquesProvides an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmissionPresents numerous hybrid multiple access and air interface architectures including OFDM/CDMA, MC-CDMA, MC-DS-CDMA and MT-CDMACovers new techniques such as space-time coding and software radio Telecommunications engineers, hardware & software system designers and researchers as well as students, lecturers and technicians will all find this an invaluable addition to their bookshelf.

886 citations

Book
11 Sep 2003
TL;DR: In this article, the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples are discussed. But the authors do not discuss the trade-off between channel quality fluctuations and frequency domain spreading codes.
Abstract: From the Publisher: Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays theentire body of knowledge currently available on OFDMProvides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMAConsiders the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examplesConverts the lessons of Shannon's information theory into design principles applicable to practical wireless systemsCombines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.

743 citations

Journal ArticleDOI
01 May 2000
TL;DR: A wide-ranging throughput comparison of the schemes discussed herein under the unified constraint of a fixed target bit error rate of 10/sup -4/.
Abstract: A historical perspective of orthogonal frequency-division multiplexing (OFDM) is given with reference to its literature. Its advantages and disadvantages are reviewed, and its performance is characterized over highly dispersive channels. The effects of both time- and frequency-domain synchronization errors are quantified, and a range of solutions proposed in the recent literature are reviewed. One of the main objectives of this review is to highlight the recent thinking behind adaptive bit allocation and turbo coding in the context of OFDM. This paper concludes with a wide-ranging throughput comparison of the schemes discussed herein under the unified constraint of a fixed target bit error rate of 10/sup -4/.

676 citations