scispace - formally typeset
Search or ask a question
Author

Stefan Neef

Bio: Stefan Neef is an academic researcher from University Hospital Regensburg. The author has contributed to research in topics: Ca2+/calmodulin-dependent protein kinase & Heart failure. The author has an hindex of 20, co-authored 40 publications receiving 2615 citations. Previous affiliations of Stefan Neef include University of Regensburg & University of Göttingen.

Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line, and found that iPS cells differentiate into functional cardiomyocytes.
Abstract: Background— The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease– and human patient–specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line. Methods and Results— With the use of a standard embryoid body–based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days. Although the analyzed iPS cell clone showed a delayed and less efficient formation of beating embryoid bodies compared with the ES cell line, the differentiation resulted in an average of 55% of spontaneously contracting iPS cell embryoid bodies. Analyses on molecular, structural, and functional levels demonstrated that iPS cell–derived cardiomyocytes show typical features of ES cell–derived cardiomyocytes. Reverse transcription p...

500 citations

Journal ArticleDOI
TL;DR: It is concluded that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4.
Abstract: Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIδ, the major CaMKII isoform expressed in the heart, we generated CaMKIIδ-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIδ-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIδ-null mice, underscoring the specificity of the CaMKIIδ signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIδ as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload.

418 citations

Journal ArticleDOI
TL;DR: In this article, the authors tested the hypothesis that CaMKII-dependent diastolic sarcoplasmic reticulum (SR) Ca2+ leak and elevated dastolic ca2+ levels occurs in atrial myocardium of patients with AF.
Abstract: Rationale: Although research suggests that diastolic Ca2+ levels might be increased in atrial fibrillation (AF), this hypothesis has never been tested. Diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) might increase diastolic Ca2+ levels and play a role in triggering or maintaining AF by transient inward currents through Na+/Ca2+ exchange. In ventricular myocardium, ryanodine receptor type 2 (RyR2) phosphorylation by Ca2+/calmodulin-dependent protein kinase (CaMK)II is emerging as an important mechanism for SR Ca2+ leak. Objective: We tested the hypothesis that CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels occurs in atrial myocardium of patients with AF. Methods and Results: We used isolated human right atrial myocytes from patients with AF versus sinus rhythm and found CaMKII expression to be increased by 40±14% ( P <0.05), as well as CaMKII phosphorylation by 33±12% ( P <0.05). This was accompanied by a significantly increased RyR2 phosphorylation at the CaMKII site (Ser2814) by 110±53%. Furthermore, cytosolic Ca2+ levels were elevated during diastole (229±20 versus 164±8 nmol/L, P <0.05). Most likely, this resulted from an increased SR Ca2+ leak in AF ( P <0.05), which was not attributable to higher SR Ca2+ load. Tetracaine experiments confirmed that SR Ca2+ leak through RyR2 leads to the elevated diastolic Ca2+ level. CaMKII inhibition normalized SR Ca2+ leak and cytosolic Ca2+ levels without changes in L-type Ca2+ current. Conclusion: Increased CaMKII-dependent phosphorylation of RyR2 leads to increased SR Ca2+ leak in human AF, causing elevated cytosolic Ca2+ levels, thereby providing a potential arrhythmogenic substrate that could trigger or maintain AF.

344 citations

Journal ArticleDOI
TL;DR: CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.
Abstract: Background—Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species–activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ could contribute to AF. Methods and Results—We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II–treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, ...

248 citations

Journal ArticleDOI
TL;DR: CaMKII inhibition acutely improves contractility in human HF where CaMKII&dgr; expression is increased, and appears to be a possible therapeutic option for patients with HF and merits further investigation.
Abstract: Rationale:Heart failure (HF) is known to be associated with increased Ca2+/calmodulin-dependent protein kinase (CaMK)II expression and activity. There is still controversial discussion about the fu...

224 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This document summarizes current research, plans, and recommendations for future research, as well as providing a history of the field and some of the techniques used, currently in use, at the National Institutes of Health.
Abstract: Jeffrey L. Anderson, MD, FACC, FAHA, Chair Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Nancy M. Albert, PhD, RN, FAHA Biykem Bozkurt, MD, PhD, FACC, FAHA Ralph G. Brindis, MD, MPH, MACC Mark A. Creager, MD, FACC, FAHA[#][1] Lesley H. Curtis, PhD, FAHA David DeMets, PhD[#][1] Robert A

6,967 citations

Journal ArticleDOI
TL;DR: It is concluded that human iPS cells are a viable option as an autologous cell source for cardiac repair and a powerful tool for cardiovascular research.
Abstract: Human induced pluripotent stem (iPS) cells hold great promise for cardiovascular research and therapeutic applications, but the ability of human iPS cells to differentiate into functional cardiomyocytes has not yet been demonstrated. The aim of this study was to characterize the cardiac differentiation potential of human iPS cells generated using OCT4, SOX2, NANOG, and LIN28 transgenes compared to human embryonic stem (ES) cells. The iPS and ES cells were differentiated using the embryoid body (EB) method. The time course of developing contracting EBs was comparable for the iPS and ES cell lines, although the absolute percentages of contracting EBs differed. RT-PCR analyses of iPS and ES cell-derived cardiomyocytes demonstrated similar cardiac gene expression patterns. The pluripotency genes OCT4 and NANOG were downregulated with cardiac differentiation, but the downregulation was blunted in the iPS cell lines due to residual transgene expression. Proliferation of iPS and ES cell derived-cardiomyocytes based on BrdU labeling was similar, and immunocytochemistry of isolated cardiomyocytes revealed indistinguishable sarcomeric organizations. Electrophysiology studies indicated that iPS cells have a capacity like ES cells for differentiation into nodal-, atrial-, and ventricular-like phenotypes based on action potential characteristics. Both iPS and ES cell-derived cardiomyocytes exhibited responsiveness to β-adrenergic stimulation manifest by an increase in spontaneous rate and a decrease in action potential duration. We conclude that human iPS cells can differentiate into functional cardiomyocytes, and thus iPS cells are a viable option as an autologous cell source for cardiac repair and a powerful tool for cardiovascular research.

1,327 citations

Journal ArticleDOI
TL;DR: It is found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.

1,114 citations

Journal ArticleDOI
TL;DR: A translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process is given.
Abstract: Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological al...

1,051 citations