scispace - formally typeset
Search or ask a question
Author

Stefan Schippers

Bio: Stefan Schippers is an academic researcher from University of Giessen. The author has contributed to research in topics: Ion & Ionization. The author has an hindex of 40, co-authored 374 publications receiving 6443 citations. Previous affiliations of Stefan Schippers include Oak Ridge National Laboratory & University of Osnabrück.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the main aspects of the interaction of slow (impact velocity typically below 1 a.u.) multicharged ions (MCI) with atomically clean solid surfaces of metals, semiconductors and insulators are discussed.

291 citations

Journal ArticleDOI
TL;DR: Term energies for dielectronic-recombination Rydberg resonances below0.07 eV are determined for Sc18+ with absolute accuracies below 0.0002 eV by electron collision spectroscopy in an ion storage ring using the twin-electron-beam technique and a cryogenic photocathode.
Abstract: Screened Radiative Corrections from Hyperfine-Split Dielectronic Resonances in Lithiumlike Scandium

142 citations

Journal ArticleDOI
13 Dec 2012-Nature
TL;DR: The results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser are reported, finding a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations.
Abstract: Fluorescence of iron ions induced by an X-ray laser allows the relative oscillator strength for Fe xvii emission to be determined; it is found to differ by 3.6σ from the best quantum mechanical calculations, suggesting that the poor agreement between prediction and observations of the brightest Fe xvii line is rooted in the quality of the underlying atomic wavefunctions used in the models. The interpretation of some of the spectral data from the Chandra and XMM-Newton orbiting X-ray missions has been complicated by discrepancies between theory and observation involving the emission lines from the highly charged Fe16+ ion, also known as Fe XVII. Specifically, the intensity of the strongest Fe XVII line, one of the brightest X-ray emissions from galaxies and stars, is generally weaker than predicted. Sven Bernitt et al. report the results of laboratory experiments in which a target of iron ions was fluoresced with femtosecond X-ray pulses from a free-electron laser. They find a relative oscillator strength that differs by 3.6σ from the best quantum mechanical calculations, suggesting that the poor agreement is rooted in the calculations of the underlying atomic dynamics and that the current astrophysical models are not at fault. Highly charged iron (Fe16+, here referred to as Fe xvii) produces some of the brightest X-ray emission lines from hot astrophysical objects1, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 angstroms. The Fe xvii spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe xvii line is generally weaker than predicted2,3. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions1, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser4; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

136 citations

Journal ArticleDOI
TL;DR: The 2s(1/2)-2p( 1/2) energy splittings DeltaE(L) of the lithiumlike ions 19779Au76, 20882Pb79+, and 23892U89+ have been measured at the Experimental Storage Ring, utilizing low energy dielectronic recombination.
Abstract: The 2s(1/2)-2p(1/2) energy splittings DeltaE(L) of the lithiumlike ions 19779Au76+, 20882Pb79+, and 23892U89+ have been measured at the Experimental Storage Ring, utilizing low energy dielectronic recombination. The resonance energies in total 41 different 1s(2) 2p(1/2)nl(j(')) (n > or =20) autoionizing Rydberg states populated in the dielectronic capture process have been determined. The 2s(1/2)-->2p(1/2) excitation energies have been obtained by extrapolation of these resonance energies to the associated series limits n--> infinity. The combined analysis of the experimental data for all three ions yields DeltaE(L)=216.134(96) eV for Au76+, 230.650(81) eV for Pb79+, and 280.516(99) eV for U89+.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented experimental evidence for confinement resonances associated with photoabsorption by a Xe atom in a C60 cage, where the giant 4D resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage.
Abstract: Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C60 cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe@C₆₀+ ion beam. The phenomenon was observed in the Xe@C(58)(3+) product ion channel. [corrected]

113 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84.
Abstract: CLOUDY is a large‐scale spectral synthesis code designed to simulate fully physical conditions within an astronomical plasma and then predict the emitted spectrum. Here we describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84. The computational methods and uncertainties are outlined together with the direction future development will take. The code is freely available and is widely used in the analysis and interpretation of emission‐line spectra. Web access to the Fortran source for CLOUDY, its documentation Hazy, and an independent electronic form of the atomic database is also described.

2,571 citations

Journal ArticleDOI
TL;DR: In this paper, a complete software package for the computation of various atomic data such as energy levels; radiative transition; collisional excitation; ionization by electron impact, photoionizatio...
Abstract: We describe a complete software package for the computation of various atomic data such as energy levels; radiative transition; collisional excitation; ionization by electron impact, photoionizatio...

1,055 citations