scispace - formally typeset
Search or ask a question
Author

Stefania Residori

Bio: Stefania Residori is an academic researcher from University of Nice Sophia Antipolis. The author has contributed to research in topics: Liquid crystal & Slow light. The author has an hindex of 34, co-authored 210 publications receiving 4545 citations. Previous affiliations of Stefania Residori include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of rogue waves, which is the name given by oceanographers to isolated large amplitude waves, that occur more frequently than expected for normal, Gaussian distributed, statistical events.

851 citations

Journal ArticleDOI
TL;DR: The concept of optical rogue wave was introduced by Solli et al. as discussed by the authors, who defined it as "an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses".
Abstract: The pioneering paper 'Optical rogue waves' by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of 'optical rogue waves'. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as 'an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses'. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms 'optical rogue waves' and 'extreme events' do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From this point of view, a number of the scientists who work in this area of research have come together to present their research in a single review article that will greatly benefit all interested parties of this research direction. Whether the authors of this 'roadmap' have similar views or different from the original concept, the potential reader of the review will enrich their knowledge by encountering most of the existing views on the subject. Previously, a special issue on optical rogue waves (2013 J. Opt. 15 060201) was successful in achieving this goal but over two years have passed and more material has been published in this quickly emerging subject. Thus, it is time for a roadmap that may stimulate and encourage further research.

243 citations

Journal ArticleDOI
TL;DR: A mechanism of spatial symmetry breaking is identified, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field, in a unidirectional optical oscillator.
Abstract: A unidirectional optical oscillator is built by using a liquid crystal light valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents complex spatiotemporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field.

221 citations

Journal ArticleDOI
TL;DR: This work presents the first direct experimental evidence of topological defects in nonlinear optics, from a single vortex, up to a large number of vortices with zero net topological charge.
Abstract: We present the first direct experimental evidence of topological defects in nonlinear optics. For increasing Fresnel numbers F, the two-dimensional field is characterized by an increasing number of topological defects, from a single vortex, up to a large number of vortices with zero net topological charge. At variance with linear scattering from a fixed phase plate, here the defect pattern evolves in time according to the nonlinear dynamics. We assign the scaling exponents for the mean number of defects, their mean separation, and the charge unbalance as functions of F, as well as the correlation time of the defect pattern.

191 citations

Journal ArticleDOI
TL;DR: By increasing the Fresnel number F of a ring cavity with photorefractive gain, the transition between a low-F regime, where a few modes compete with a periodic alternation which becomes irregular with increasing F, and a high-F regimes, where many modes oscillate simultaneously, gives rise to chaotic domains spatially correlated over a length much shorter than the wave-front size.
Abstract: By increasing the Fresnel number F of a ring cavity with photorefractive gain, we show the transition between a low-F regime, where a few modes compete with a periodic alternation which becomes irregular with increasing F (chaotic itinerancy), and a high-F regime, where many modes oscillate simultaneously, giving rise to chaotic domains spatially correlated over a length much shorter than the wave-front size (spatiotemporal chaos).

187 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
Abstract: This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases.

1,469 citations

Journal ArticleDOI
TL;DR: In this paper, a spiral phaseplate can convert a TEM00 laser beam into a helical wavefront beam with a phase singularity at its axis, and the diffractive-optical effect of the spiral phase plate is implemented by index matching a macroscopic structure in an optical immersion.

1,393 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations