scispace - formally typeset
Search or ask a question
Author

Stefano Atzeni

Bio: Stefano Atzeni is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Inertial confinement fusion & Ignition system. The author has an hindex of 33, co-authored 155 publications receiving 5344 citations. Previous affiliations of Stefano Atzeni include European Atomic Energy Community & École Polytechnique.


Papers
More filters
Book
12 Aug 2004
TL;DR: In this paper, the authors present a review of the history of nuclear fusion reactions and their application in the field of Beam-Target Interaction (BTI) with Hohlraum targets.
Abstract: Foreword Preface 1. Nuclear Fusion Reactions 2. Thermonuclear Fusion and Confinement 3. Inertial Confinement by Spherical Implosion 4. Ignition and Burn 5. Energy Gain 6. Hydrodynamics 7. Thermal Waves and Ablative Drive 8. Hydrodynamic Stability 9. Hohlraum Targets 10. Hot Dense Matter 11. Beam-Target Interaction 12. Fast Ignition References

498 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the dependence of the parameters (energy Ep, power Wp, intensity Ip) of a fast ignitor on the penetration depth R of the fast particles.
Abstract: A key element of the fast ignitor scheme is the pulse of fast particles creating the igniting spark. In this paper, the dependence of the parameters (energy Ep, power Wp, intensity Ip) of such a pulse on the penetration depth R of the fast particles is studied by two-dimensional simulations of the evolution of a deuterium–tritium fuel, precompressed at density ρ, and heated by a beam of particles with assigned R. The ignition windows in the (Ep,Wp,Ip) space are found to depend very little on R over the interval 0.15⩽R⩽1.2 g/cm2. At ρ=300 g/cm3, the minimum ignition energy is about 14 kJ; an optimal set of parameters (with energy and power about the required minimum, and intensity relatively close to the minimum) is Ep≅17 kJ, Wp≅0.85×1015 W, and Ip≅6.5×1019 W/cm2 (achieved at R=0.6 g/cm2). The optimal energy scales with the density as Ep∝ρ−1.85. Scaling laws are also presented for the other pulse parameters and for the limiting energy gain.

232 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included, as the critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient.
Abstract: Marshall Rosenbluth’s extensive contributions included seminal analysis of the physics of the laser-plasma interaction and review and advocacy of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a conventional inertial confinement fusion driver and then ignited by a short (∼10ps) pulse, high-power laser. Due to technological advances, such short-pulse lasers can focus power equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient...

174 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effects of deuterium-tritium fuel compression and ignition under conditions relevant to the scheme of fast ignition by laser generated proton beams.
Abstract: Compression and ignition of deuterium–tritium fuel under conditions relevant to the scheme of fast ignition by laser generated proton beams [Roth et al., Phys. Rev. Lett. 86, 436 (2001)] are studied by numerical simulation. Compression of a fuel containing spherical capsule driven by a pulse of thermal radiation is studied by a one-dimensional radiation hydrodynamics code. Irradiation of the compressed fuel by an intense proton beam, generated by a target at distance d from the capsule center, and subsequent ignition and burn are simulated by a two-dimensional code. A robust capsule, absorbing 635 kJ of 210 eV (peak) thermal x rays, with fusion yield of almost 500 MJ, has been designed, which could allow for target gain of 200. On the other hand, for a reasonable proton spectrum the required proton beam energy Eig, exceeds 25 kJ (for d=4 mm), even neglecting beam losses in the hohlraum and assuming that the beam can be focused on a spot with radius of 10 μm. The effects of proton range lengthening due to ...

161 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields is presented.
Abstract: The field of laser-matter interaction traditionally deals with the response of atoms, molecules, and plasmas to an external light wave. However, the recent sustained technological progress is opening up the possibility of employing intense laser radiation to trigger or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding ${10}^{22}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum, and can trigger the creation of particles such as electrons, muons, and pions and their corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and may even allow for the potential discovery of new particles beyond the standard model. These are the main topics of this article, which is devoted to a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields.

1,394 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives are given in this article. But the main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.
Abstract: Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the applicative potential and in the perspective to investigate novel regimes as available laser intensities will be increasing. Experiments have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance, and low emittance. An overview is given of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. The main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.

1,221 citations