scispace - formally typeset
Search or ask a question
Author

Stefano Boccaletti

Bio: Stefano Boccaletti is an academic researcher from Moscow Institute of Physics and Technology. The author has contributed to research in topics: Complex network & Synchronization (computer science). The author has an hindex of 60, co-authored 348 publications receiving 25776 citations. Previous affiliations of Stefano Boccaletti include King Juan Carlos University & Istituto Nazionale di Fisica Nucleare.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce a general framework to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order, and show that complete synchronization exists as an invariant solution, and give the necessary condition for it to be observed as a stable state.
Abstract: Various systems in physics, biology, social sciences and engineering have been successfully modeled as networks of coupled dynamical systems, where the links describe pairwise interactions. This is, however, too strong a limitation, as recent studies have revealed that higher-order many-body interactions are present in social groups, ecosystems and in the human brain, and they actually affect the emergent dynamics of all these systems. Here, we introduce a general framework to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order. We show that complete synchronization exists as an invariant solution, and give the necessary condition for it to be observed as a stable state. Moreover, in some relevant instances, such a necessary condition takes the form of a Master Stability Function. This generalizes the existing results valid for pairwise interactions to the case of complex systems with the most general possible architecture.

79 citations

Journal ArticleDOI
TL;DR: In this article, the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional complex Ginzburg-Landau equations, both in the phase and in the amplitude turbulence regimes, is reported.
Abstract: We report the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional complex Ginzburg-Landau equations, both in the phase and in the amplitude turbulence regimes. In the case of small parameter mismatches, the coupling induces a transition to a completely synchronized state. For large parameter mismatches, the transition is mediated by phase synchronization. In the former case, the synchronized state is not qualitatively different from the unsynchronized one, while in the latter case the synchronized state may substantially differ from the unsynchronized one, and it is mainly dictated by the synchronization process of the space-time defects.

78 citations

Journal ArticleDOI
TL;DR: A self-consistent theory enabling the systematic analysis of cascading failures in networks and encompassing a broad range of dynamical systems, from epidemic spreading, to birth–death processes, to biochemical and regulatory dynamics is presented.
Abstract: Catastrophic and major disasters in real-world systems, such as blackouts in power grids or global failures in critical infrastructures, are often triggered by minor events which originate a cascading failure in interdependent graphs. We present here a self-consistent theory enabling the systematic analysis of cascading failures in such networks and encompassing a broad range of dynamical systems, from epidemic spreading, to birth-death processes, to biochemical and regulatory dynamics. We offer testable predictions on breakdown scenarios, and, in particular, we unveil the conditions under which the percolation transition is of the first-order or the second-order type, as well as prove that accounting for dynamics in the nodes always accelerates the cascading process. Besides applying directly to relevant real-world situations, our results give practical hints on how to engineer more robust networked systems.

76 citations

Journal ArticleDOI
26 Oct 2007-Chaos
TL;DR: A novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks, that makes use of combined powers of the links' betweenness.
Abstract: We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links’ betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

74 citations

Journal ArticleDOI
TL;DR: The analytical solution of a generalized Kuramoto model is reported, and a series of exact results for the first-order synchronization transition are derived, including the exact, generic, solutions for the critical coupling strengths for both the forward and backward transitions.
Abstract: First-order, or discontinuous, synchronization transition, i.e. an abrupt and irreversible phase transition with hysteresis to the synchronized state of coupled oscillators, has attracted much attention along the past years. We here report the analytical solution of a generalized Kuramoto model, and derive a series of exact results for the first-order synchronization transition, including i) the exact, generic, solutions for the critical coupling strengths for both the forward and backward transitions, ii) the closed form of the forward transition point and the linear stability analysis for the incoherent state (for a Lorentzian frequency distribution), and iii) the closed forms for both the stable and unstable coherent states (and their stabilities) for the backward transition. Our results, together with elucidating the first-order nature of the transition, provide insights on the mechanisms at the basis of such a synchronization phenomenon.

74 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations