scispace - formally typeset
Search or ask a question
Author

Stefano Boccaletti

Bio: Stefano Boccaletti is an academic researcher from Moscow Institute of Physics and Technology. The author has contributed to research in topics: Complex network & Synchronization (computer science). The author has an hindex of 60, co-authored 348 publications receiving 25776 citations. Previous affiliations of Stefano Boccaletti include King Juan Carlos University & Istituto Nazionale di Fisica Nucleare.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the main-stream literature on phase transitions in networked systems is presented, with the twofold aim of summarizing the existing results and pointing out possible directions for future research.

193 citations

Journal ArticleDOI
TL;DR: The requirements for synchronization in a complex network of asymmetrically coupled units are described and the situations in nongrowing random networks with and without a degree ordering are compared.
Abstract: The propensity for synchronization is studied in a complex network of asymmetrically coupled units, where the asymmetry in a given link is determined by the relative age of the involved nodes. In growing scale-free networks, synchronization is enhanced when couplings from older to younger nodes are dominant. We describe the requirements for such an effect in a more general context and compare with the situations in nongrowing random networks with and without a degree ordering.

186 citations

Journal ArticleDOI
TL;DR: This work extends the concept of eigenvector centrality to multiplex networks, and introduces several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities.
Abstract: We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable conditions, such centrality measures exist and are unique. Computer experiments and simulations demonstrate that the proposed measures provide substantially different results when applied to the same multiplex structure, and highlight the non-trivial relationships between the different measures of centrality introduced.

186 citations

Journal ArticleDOI
TL;DR: It is shown that, as far as the time scale for the motion of the agents is much shorter than that of the associated dynamical systems, the global behavior can be characterized by a scaled all-to-all Laplacian matrix, and the synchronization conditions depend on the agent density on the plane.
Abstract: We consider a set of mobile agents in a two dimensional space, each one of them carrying a chaotic oscillator, and discuss the related synchronization issues under the framework of time-variant networks. In particular, we show that, as far as the time scale for the motion of the agents is much shorter than that of the associated dynamical systems, the global behavior can be characterized by a scaled all-to-all Laplacian matrix, and the synchronization conditions depend on the agent density on the plane.

168 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations