scispace - formally typeset
Search or ask a question
Author

Stefano Caputo

Bio: Stefano Caputo is an academic researcher from University of Florence. The author has contributed to research in topics: Visible light communication & Computer science. The author has an hindex of 8, co-authored 24 publications receiving 187 citations.

Papers
More filters
Proceedings ArticleDOI
17 Mar 2020
TL;DR: This paper deals with the answers to those questions for the health vertical of 6G, a technology which will not only make the wireless healthcare true, but it also will allow the Internet of Bio-Nano-Things, letting the human body be part of the “Net”.
Abstract: The current implementation of 5G technology has pushed the academic community to think about what is next. To properly answer this question, we have to figure out which will be the needs in the future. This paper deals with the answers to those questions for the health vertical of 6G. The grown and the aging of population worldwide make the current healthcare systems unsustainable in the future. Wireless health has to be implemented to let all citizens be followed and managed in the health process of their life by pursuing an economically viable way for the community. 6G is envisioned to be a technology which will not only make the wireless healthcare true, but it also will allow the Internet of Bio-Nano-Things, letting the human body be part of the “Net”. Very low complex wearable/implantable devices will be part of our everyday life, which can recover information about our health and lifestyle from every object we interact with, from a bottle of water to a smart drug.

63 citations

Journal ArticleDOI
TL;DR: This analysis shows that the VLC system reliably attains ultra-low, sub-ms latencies for distances up to 30 m, and still grants a latency below 10 ms even for distances of 50 m at 99.9% confidence level.
Abstract: Visible Light Communications (VLC) represents a very promising technology for the implementation of revolutionary Intelligent Transportation Systems (ITS) protocols. In cooperative ITS, where the interconnection of vehicular units will enable for revolutionary protocols such as car platooning, queue avoidance, and for many critical automatic and/or assisted driving applications, the capability of vehicles to relay safety-critical information to incoming units in a very fast and reliable way is a key factor. In this paper, we propose and test a novel infrastructure-to-vehicle-to-vehicle (I2V2V) VLC system for ITS, embedding a digital Active Decode-and-Relay (ADR) stage for decoding and relaying the information received from a regular LED traffic light, which is enabled for VLC, towards further incoming units. The experimental validation of the ADR VLC chain, as well as a thorough statistical analysis of packet error rate (PER) distribution in the transmission, has been performed for distances up to 50 meters. Our analysis shows that the VLC system reliably attains ultra-low, sub-ms latencies for distances up to 30 m, and still grants a latency below 10 ms even for distances of 50 m at 99.9% confidence level. Such latency values are far shorter than those reported in literature for RF-based technologies such as, e.g., those based on LTE or WiFi. Our results could boost the introduction of VLC technology in real cooperative ITS scenarios where very low latencies are essential. The demonstrated system prototype is compatible with IEEE 802.15.7 standard.

52 citations

Posted Content
TL;DR: The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics, and the fundamental research challenges are addressed.
Abstract: The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics. This white paper addresses their fundamental research challenges in three key areas. Trust: Under the current "open internet" regulation, the telco cloud can be used for trust services only equally for all users. 6G network must support embedded trust for increased level of information security in 6G. Trust modeling, trust policies and trust mechanisms need to be defined. 6G interlinks physical and digital worlds making safety dependent on information security. Therefore, we need trustworthy 6G. Security: In 6G era, the dependence of the economy and societies on IT and the networks will deepen. The role of IT and the networks in national security keeps rising - a continuation of what we see in 5G. The development towards cloud and edge native infrastructures is expected to continue in 6G networks, and we need holistic 6G network security architecture planning. Security automation opens new questions: machine learning can be used to make safer systems, but also more dangerous attacks. Physical layer security techniques can also represent efficient solutions for securing less investigated network segments as first line of defense. Privacy: There is currently no way to unambiguously determine when linked, deidentified datasets cross the threshold to become personally identifiable. Courts in different parts of the world are making decisions about whether privacy is being infringed, while companies are seeking new ways to exploit private data to create new business revenues. As solution alternatives, we may consider blockchain, distributed ledger technologies and differential privacy approaches.

52 citations

Journal ArticleDOI
10 Aug 2021
TL;DR: In this paper, the authors discuss challenges, solutions and visions of physical layer security in beyond-5G networks, and propose a framework to provide security even to low-resourced nodes in different environments.
Abstract: The sixth generation (6G) of mobile network will be composed by different nodes, from macro-devices (satellite) to nano-devices (sensors inside the human body), providing a full connectivity fabric all around us. These heterogeneous nodes constitute an ultra dense network managing tons of information, often very sensitive. To trust the services provided by such network, security is a mandatory feature by design. In this scenario, physical-layer security (PLS) can act as a first line of defense, providing security even to low-resourced nodes in different environments. This paper discusses challenges, solutions and visions of PLS in beyond-5G networks.

47 citations

Journal ArticleDOI
TL;DR: The preliminary elements of a systematic approach to quantifying information security as it propagates through an MC link are presented, and a closed-form mathematical expression for the secrecy capacity of an MC system based on free molecule diffusion is provided.
Abstract: The biocompatibility and nanoscale features of Molecular Communication (MC) make this paradigm, based on molecules and chemical reactions, an enabler for communication theory applications in the healthcare at its biological level ( e.g. , bimolecular disease detection/monitoring and intelligent drug delivery). However, the adoption of MC-based innovative solutions into privacy and security-sensitive areas is opening new challenges for this research field. Despite fundamentals of information theory applied to MC have been established in the last decade, research work on security in MC systems is still limited. In contrast to previous literature focused on challenges, and potential roadmaps to secure MC, this paper presents the preliminary elements of a systematic approach to quantifying information security as it propagates through an MC link. In particular, a closed-form mathematical expression for the secrecy capacity of an MC system based on free molecule diffusion is provided. Numerical results highlight the dependence of the secrecy capacity on the average thermodynamic transmit power, the eavesdropper’s distance, the transmitted signal bandwidth, and the receiver radius. In addition, the concept of secure distance in an MC system is introduced and investigated for two different techniques of signal detection, i.e. , based on energy and amplitude. The secrecy capacity can be used to determine how much secure information (bit/sec/Hz) can be exchanged and within which operative range, while the secure distance can be used to set the transmit power to obtain a secure channel at a given distance. We envision these metrics will be of utmost importance for a future design framework tailored to MC systems and their practical applications.

36 citations


Cited by
More filters
Journal Article
TL;DR: Understanding of the occurrence and development of road traffic injuries will contribute to the prevention and control of crash and to the implementation of "everybody has the right to enjoy health" proposed by WHO.
Abstract: The appearance of cars has raised materialistic civilization and living standard to an unprecedented level. Today, it is hard to imagine how we human beings can live without cars. Yet, motor vehicles can cause a great number of deaths and injuries as well as considerable economic losses, which have constituted the global burden. Understanding of the occurrence and development of road traffic injuries will contribute to the prevention and control of crash and to the implementation of "everybody has the right to enjoy health" proposed by WHO.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

305 citations

Journal ArticleDOI
07 Apr 2021
TL;DR: In this paper, the authors provide a comprehensive survey of the current developments towards 6G and elaborate the requirements that are necessary to realize the 6G applications, and summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions toward 6G.
Abstract: Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G.

273 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions.
Abstract: Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust.

224 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth-generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) toward a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space–air–ground–underwater communications, Terahertz communications, massive ultrareliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely, healthcare IoTs, Vehicular IoTs and Autonomous Driving, Unmanned Aerial Vehicles, Satellite IoTs, and Industrial IoTs. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

171 citations