scispace - formally typeset
Search or ask a question
Author

Stefano Lanzoni

Other affiliations: University of Trento
Bio: Stefano Lanzoni is an academic researcher from University of Padua. The author has contributed to research in topics: Sediment & Salt marsh. The author has an hindex of 40, co-authored 115 publications receiving 4992 citations. Previous affiliations of Stefano Lanzoni include University of Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an ecomorphodynamic model was proposed to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level.
Abstract: We propose an ecomorphodynamic model which conceptualizes the chief land-forming processes operating on the intertwined, long-term evolution of marsh platforms and embedded tidal networks. The rapid network incision (previously addressed by the authors) is decoupled from the geomorphological dynamics of intertidal areas, governed by sediment erosion and deposition and crucially affected by the presence of vegetation. This allows us to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level. Different morphological evolutionary regimes are shown to depend on marsh ecology. Marsh accretion rates, enhanced by vegetation growth, and the related platform elevations tend to decrease with distance from the creek, measured along suitably defined flow paths. The negative feedback between surface elevation and its inorganic accretion rate is reinforced by the relation between plant productivity and soil elevation in Spartina-dominated marshes and counteracted by positive feedbacks in multispecies-vegetated marshes. When evolving under constant sea level, unvegetated and Spartina-dominated marshes asymptotically tend to mean high water level (MHWL), different from multiple vegetation species marshes, which can make the evolutionary transition to upland. Equilibrium configurations below MHWL can be reached under constant rates of sea level rise, depending on sediment supply and vegetation productivity. Our analyses on marine regressions and transgressions show that when the system is in a supply-limited regime, network retreat and expansion (associated with regressions and transgressions, respectively) tend to be cyclic. Conversely, in a transport-limited regime, network reexpansion following a regression tends to take on a new configuration, showing a hysteretic behavior. Copyright 2007 by the American Geophysical Union.

307 citations

01 Dec 2006
TL;DR: In this article, an ecomorphodynamic model was proposed to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level.
Abstract: We propose an ecomorphodynamic model which conceptualizes the chief land-forming processes operating on the intertwined, long-term evolution of marsh platforms and embedded tidal networks. The rapid network incision (previously addressed by the authors) is decoupled from the geomorphological dynamics of intertidal areas, governed by sediment erosion and deposition and crucially affected by the presence of vegetation. This allows us to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level. Different morphological evolutionary regimes are shown to depend on marsh ecology. Marsh accretion rates, enhanced by vegetation growth, and the related platform elevations tend to decrease with distance from the creek, measured along suitably defined flow paths. The negative feedback between surface elevation and its inorganic accretion rate is reinforced by the relation between plant productivity and soil elevation in Spartina-dominated marshes and counteracted by positive feedbacks in multispecies-vegetated marshes. When evolving under constant sea level, unvegetated and Spartina-dominated marshes asymptotically tend to mean high water level (MHWL), different from multiple vegetation species marshes, which can make the evolutionary transition to upland. Equilibrium configurations below MHWL can be reached under constant rates of sea level rise, depending on sediment supply and vegetation productivity. Our analyses on marine regressions and transgressions show that when the system is in a supply-limited regime, network retreat and expansion (associated with regressions and transgressions, respectively) tend to be cyclic. Conversely, in a transport-limited regime, network reexpansion following a regression tends to take on a new configuration, showing a hysteretic behavior. Copyright 2007 by the American Geophysical Union.

276 citations

Journal ArticleDOI
TL;DR: In this article, the morphodynamic equilibrium of funnel-shaped well-mixed estuaries and/or tidal channels is investigated for the ideal case of a frictionally dominated estuary consisting of noncohesive sediment and with insignificant intertidal storage of water in tidal flats and salt marshes.
Abstract: [1] This contribution investigates the morphodynamic equilibrium of funnel-shaped well-mixed estuaries and/or tidal channels. The one-dimensional de Saint Venant and Exner equations are solved numerically for the ideal case of a frictionally dominated estuary consisting of noncohesive sediment and with insignificant intertidal storage of water in tidal flats and salt marshes. This class of estuaries turns out to be invariably flood dominated. The resulting asymmetries in surface elevations and tidal currents lead to a net sediment flux within a tidal cycle which is directed landward. As a consequence, sediments are trapped within the estuary and the bottom profile evolves asymptotically toward an equilibrium configuration, allowing a vanishing net sediment flux everywhere and, in accordance with field observations, a nearly constant value of the maximum flood/ebb speed. Such an equilibrium bed profile is characterized by a concavity increasing as the estuary convergence increases and by a uniquely determined value of the depth at the inlet section. The final length of the estuary is fixed by the longitudinal extension of the very shallow area which tends to form in the landward portion of the estuary. Note that sediment advection is neglected in the analysis, an assumption appropriate to the case of not too fine sediment.

228 citations

Journal ArticleDOI
TL;DR: In this paper, a model of coupled tidal physical and biological processes is proposed to predict the future sea level rise in the Venice lagoon, based on a large body of empirical observations spanning at least five centuries.
Abstract: Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur. Copyright 2007 by the American Geophysical Union.

216 citations

Journal ArticleDOI
TL;DR: In this article, the problem of one-dimensional tide propagation in convergent estuaries was revisited, and a nonlinear parabolic approximation of the full de Saint Venant equations was developed to describe this behaviour.
Abstract: We revisit the problem of one-dimensional tide propagation in convergent estuaries considering four limiting cases defined by the relative intensity of dissipation versus local inertia in the momentum equation and by the role of channel convergence in the mass balance. In weakly dissipative estuaries, tide propagation is essentially a weakly nonlinear phenomenon where overtides are generated in a cascade process such that higher harmonics have increasingly smaller amplitudes. Furthermore, nonlinearity gives rise to a seaward directed residual current. As channel convergence increases, the distortion of the tidal wave is enhanced and both tidal wave speed and wave lenght increase. The solution loses its wavy character when the estuary reaches its “critical convergence”; above such convergence the weakly dissipative limit becomes meaningless. Finally, when channel convergence is strong or moderate, weakly dissipative estuaries turn out to be ebb dominated. In strongly dissipative estuaries, tide propagation becomes a strongly nonlinear phenomenon that displays peaking and sharp distortion of the current profile, and that invariably leads to flood dominance. As the role of channel convergence is increasingly counteracted by the diffusive effect of spatial variations of the current velocity on flow continuity, tidal amplitude experiences a progressively decreasing amplification while tidal wave speed increases. We develop a nonlinear parabolic approximation of the full de Saint Venant equations able to describe this behaviour. Finally, strongly convergent and moderately dissipative estuaries enhance wave peaking as the effect of local inertia is increased. The full de Saint Venant equations are the appropriate model to treat this case.

195 citations


Cited by
More filters
Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea- level rise, and socio-economic factors that influence transgression into adjacent uplands.
Abstract: Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.

1,303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conduct a literature review and a small meta-analysis of wave attenuation data, and find overwhelming evidence in support of established theory that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves.
Abstract: For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.

828 citations

Journal ArticleDOI
TL;DR: A review of the sediment facies change through the fluvial-to-marine transition is presented in this article. But the authors focus on the sedimentological responses to these processes, focusing on the observable, longitudinal variations in the development and/or abundance of each deposit characteristic (e.g., sand grain size, paleocurrent patterns, mud drapes, and biological attributes).

812 citations

Journal ArticleDOI
TL;DR: Kirwan et al. as discussed by the authors used simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level, finding that nonlinear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea level rise where suspended sediment concentrations are greater than ∼20 mg/L.
Abstract: [1] Assumptions of a static landscape inspire predictions that about half of the world’s coastal wetlands will submerge during this century in response to sea‐level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea‐level assessments, we find that non‐linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea‐ level rise where suspended sediment concentrations are greater than ∼20 mg/L. Under scenarios of more rapid sea‐level rise (e.g., those that include ice sheet melting), marsheswill likelysubmerge neartheend ofthe 21stcentury. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processestomodifytheirphysicalenvironment.Citation: Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman (2010), Limits on the adaptability of coastal marshes to rising sea level, Geophys. Res. Lett., 37, L23401,

697 citations

Journal Article
TL;DR: In this paper, the size distribution of bedload in paved gravel-bed streams was studied and a method for calculating bedload size distribution that accounts for deviation from similarity was developed.
Abstract: Field data are used to study the size distribution of bedload in paved gravel-bed streams. Similarity analysis yields the results that all grain size ranges are of approximately equal transportability when the critical condition for breaking the pavement is exceeded. This result is only approximately correct due to deviations from similarity. However, it is adequate to justify development of a method for calculating total bedload, which requires only the subpavement median grain size rather than the size distribution. A method for calculating bedload size distribution that accounts for deviation from similarity is also developed.

606 citations