scispace - formally typeset
Search or ask a question
Author

Stefano Marano

Other affiliations: University of Sannio
Bio: Stefano Marano is an academic researcher from University of Salerno. The author has contributed to research in topics: Wireless sensor network & Gravitational wave. The author has an hindex of 29, co-authored 158 publications receiving 3479 citations. Previous affiliations of Stefano Marano include University of Sannio.


Papers
More filters
Journal ArticleDOI
TL;DR: For detection under binary hypotheses with quantized sensor observations, the optimal attacking distributions for Byzantine sensors that minimize the detection error exponent are obtained using a ldquowater-fillingrdquo procedure.
Abstract: Distributed detection in the presence of cooperative (Byzantine) attack is considered. It is assumed that a fraction of the monitoring sensors are compromised by an adversary, and these compromised (Byzantine) sensors are reprogrammed to transmit fictitious observations aimed at confusing the decision maker at the fusion center. For detection under binary hypotheses with quantized sensor observations, the optimal attacking distributions for Byzantine sensors that minimize the detection error exponent are obtained using a ldquowater-fillingrdquo procedure. The smallest error exponent, as a function of the Byzantine sensor population, characterizes the power of attack. Also obtained is the minimum fraction of Byzantine sensors that destroys the consistency of detection at the fusion center. The case when multiple measurements are made at the remote nodes is also considered, and it is shown that the detection performance scales with the number of sensors differently from the number of observations at each sensor.

193 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Rana X. Adhikari1, Juri Agresti1  +460 moreInstitutions (49)
TL;DR: In this paper, a search for gravitational waves from the coalescence of compact binary systems during the third and fourth LIGO science runs was reported, which focused on gravitational waves generated during the inspiral phase of the binary evolution.
Abstract: We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35M_⊙

179 citations

Journal ArticleDOI
TL;DR: The Virgo gravitational wave detector is an interferometer with 3 km long arms in construction near Pisa to be commissioned in the year 2000 as mentioned in this paper, which is designed to achieve a strain sensitivity of a few times at 200 Hz.
Abstract: The Virgo gravitational wave detector is an interferometer with 3 km long arms in construction near Pisa to be commissioned in the year 2000. Virgo has been designed to achieve a strain sensitivity of a few times at 200 Hz. A large effort has gone into the conception of the mirror suspension system, which is expected to reduce noise to the level of at 10 Hz. The expected signals and main sources of noise are briefly discussed; the choices made are illustrated together with the present status of the experiment.

175 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Rana X. Adhikari1, Juri Agresti1  +462 moreInstitutions (50)
TL;DR: In this paper, the authors presented upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors.
Abstract: We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors The data from both runs have been combined coherently to maximize sensitivity For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits Our upper limits are therefore the first measured for 56 of these pulsars For the remaining 22, our results improve on previous upper limits by up to a factor of 10 For example, our tightest upper limit on the gravitational strain is 26×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124–3358 is less than 10-6 Furthermore, our strain upper limit for the Crab pulsar is only 22 times greater than the fiducial spin-down limit

170 citations

Journal ArticleDOI
TL;DR: Analysis of the behavior of a WSN that continuously senses the surrounding environment, while consensus among its nodes is simultaneously enforced and comparison with an ideal centralized system is provided.
Abstract: In many environmental monitoring applications of Wireless Sensor Networks (WSNs), safe information retrieval from any subset of sensors, at an arbitrary instant of time, should be guaranteed. Accordingly, we study the behavior of a WSN that continuously senses the surrounding environment, while consensus among its nodes is simultaneously enforced. For this running consensus scheme, analytical bounds in terms of consensus degree and comparison with an ideal centralized system are provided, and example of applications are presented.

168 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations