scispace - formally typeset
Search or ask a question
Author

Stefano Morelli

Bio: Stefano Morelli is an academic researcher from University of Florence. The author has contributed to research in topics: Landslide & Debris flow. The author has an hindex of 16, co-authored 45 publications receiving 787 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Spaceborne optical Very High Resolution and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post- disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps.
Abstract: The current availability of advanced remote sensing technologies in the field of landslide analysis allows for rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, as well as optimizing fieldwork and investigating hazardous or inaccessible areas, while granting at the same time the safety of the operators. Among Earth Observation (EO) techniques in the last decades optical Very High Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems, and by the new generations of sensors designed for interferometric applications. Although these spaceborne platforms have revisiting times of few days they still cannot match the spatial detail or time resolution achievable by means of Unmanned Aerial Vehicles (UAV) Digital Photogrammetry (DP), and ground-based devices, such as Ground-Based Interferometric SAR (GB-InSAR), Terrestrial Laser Scanning (TLS) and InfraRed Thermography (IRT), which in the recent years have undergone a significant increase of usage, thanks to their technological development and data quality improvement, fast measurement and processing times, portability and cost-effectiveness. In this paper the potential of the abovementioned techniques and the effectiveness of their synergic use is explored in the field of landslide analysis by analyzing various case studies, characterized by different slope instability processes, spatial scales and risk management phases. Spaceborne optical Very High Resolution (VHR) and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post- disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps. The potential of UAV-DP for very high resolution periodical checks of instability phenomena was explored at a slope-scale in a selected test site; two shallow landslides were detected and characterized, in terms of areal extension, volume and temporal evolution. The combined use of GB-InSAR, TLS and IRT ground based methods, was applied for the surveying, monitoring and characterization of rock slides, unstable cliffs and translational slides. These applications were evaluated in the framework of successful rapid risk scenario evaluation, long term monitoring and emergency management activities. All of the results were validated by means of field surveying activities. The attempt of this work is to give a contribution to the current state of the art of advanced spaceborne and ground based techniques applied to landslide studies, with the aim of improving and extending their investigative capacity in the framework of a growing demand for effective Civil Protection procedures in pre- and post-disaster initiatives. Advantages and limitations of the proposed methods, as well as further fields of applications are evaluated for landslide-prone areas.

219 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focused on works of the last twelve years (2007-2018), and the main goal is to analyse the geophysical community efforts toward overcoming the geophysics and landslide review highlighted in the 2007 geophysicists and landslides review.
Abstract: Landslide deformations involve approximately all geological materials (natural rocks, soil, artificial fill, or combinations of these materials) and can occur and develop in a large variety of volumes and shapes. The characterization of the material inhomogeneities and their properties, the study of the deformation processes, and the delimitation of boundaries and potential slip surfaces are not simple goals. Since the ‘70s, the international community (mainly geophysicists and lower geologists and geological engineers) has begun to employ, together with other techniques, geophysical methods to characterize and monitor landslides. Both the associated advantages and limitations have been highlighted over the years, and some drawbacks are still open. This review is focused on works of the last twelve years (2007-2018), and the main goal is to analyse the geophysical community efforts toward overcoming the geophysical technique limitations highlighted in the 2007 geophysics and landslide review. To achieve this aim, contrary to previous reviews that analysed the advantages and limitations of each technique using a “technique approach,” the analysis was carried out using a “material landslide approach” on the basis of the more recent landslides classification.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a semiautomatic procedure is presented for a rapid definition of rock fall susceptibility scenarios with the purpose of civil protection, which can be useful in supporting proper maintenance and land management programs both in ordinary and in emergency circumstances.
Abstract: The primary objective of this paper is to present a semiautomatic procedure that, integrated with traditional methods, can be useful for a rapid definition of rock fall susceptibility scenarios with the purpose of civil protection. Due to its morphology (steep slopes and narrow valleys), regional seismicity, and rock mass characteristics, the Nera Valley (Valnerina, Umbria Region, Italy) is characterized by high rock fall risk. With the aim of covering a wide range of features and investigating the main advantages and drawbacks of the proposed approach, data collection (terrestrial laser scanning (TLS) and geomechanical surveys) was carried out at three different slopes. Detailed three-dimensional (3D) models were created to reconstruct the shape and volume of the most unstable blocks, to define the position of the main rock fall source areas, and to precisely distinguish the outcropping materials and the position of the elements at risk for reliable runout analyses. The proposed approach can be useful in supporting proper maintenance and land management programs both in ordinary and in emergency circumstances.

80 citations

Journal ArticleDOI
TL;DR: In this article, an integrated methodology based on traditional field and remote surveys such as terrestrial laser scanning and terrestrial infrared thermography is proposed, with the aim of defining susceptibility scenarios connected to rock slopes affected by instability processes.
Abstract: An integrated methodology based on traditional field and remote surveys such as terrestrial laser scanning and terrestrial infrared thermography is proposed, with the aim of defining susceptibility scenarios connected to rock slopes affected by instability processes. The proposed methodology was applied to a rock slope threatening a coastal panoramic roadway located in western Elba Island (Livorno district, central Italy). The final aim of the methodology was to obtain an accurate three-dimensional rock mass characterization in order to detect the potentially more hazardous rock mass portions, calculate their volume, and collect all the required geomechanical and geometrical parameters to perform a detailed stability analysis. The proposed approach proved to be an effective tool in the field of engineering geology and emergency management, when it is often urgently necessary to minimize survey time when operating in dangerous environments and gather all the required information as fast as possible.

59 citations

Journal ArticleDOI
TL;DR: The proposed methodology proved to be an effective tool for landslide analysis, especially in the field of emergency management, when it is often necessary to gather all the required information in dangerous environments as fast as possible, to be used for the planning of mitigation measures and the evaluation of hazardous scenarios.
Abstract: In this paper, the potential of Infrared Thermography (IRT) as a novel operational tool for landslide surveying, mapping and characterization was tested and demonstrated in different case studies, by analyzing various types of instability processes (rock slide/fall, roto-translational slide-flow). In particular, IRT was applied, both from terrestrial and airborne platforms, in an integrated methodology with other geomatcs methods, such as terrestrial laser scanning (TLS) and global positioning systems (GPS), for the detection and mapping of landslides’ potentially hazardous structural and morphological features (structural discontinuities and open fractures, scarps, seepage and moisture zones, landslide drainage network and ponds). Depending on the study areas’ hazard context, the collected remotely sensed data were validated through field inspections, with the purpose of studying and verifying the causes of mass movements. The challenge of this work is to go beyond the current state of the art of IRT in landslide studies, with the aim of improving and extending the investigative capacity of the analyzed technique, in the framework of a growing demand for effective Civil Protection procedures in landslide geo-hydrological disaster managing activities. The proposed methodology proved to be an effective tool for landslide analysis, especially in the field of emergency management, when it is often necessary to gather all the required information in dangerous environments as fast as possible, to be used for the planning of mitigation measures and the evaluation of hazardous scenarios. Advantages and limitations of the proposed method in the field of the explored applications were evaluated, as well as general operative recommendations and future perspectives.

54 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
01 Mar 1980-Nature

1,327 citations

Book ChapterDOI
01 Jan 2022

818 citations

01 Jan 2001
TL;DR: In this paper, the evolution of the Ancona landslide (central Italy) was analyzed by processing 61 ERS images acquired in the time span between June 1992 and December 2000.
Abstract: Spaceborne differential synthetic aperture radar interferometry (DInSAR) has already proven its potential for mapping ground deformation phenomena, e.g. volcano dynamics. However, atmospheric disturbances as well as phase decorrelation have prevented hitherto this technique from achieving full operational capability. These drawbacks are overcome by carrying out measurements on a subset of image pixels corresponding to pointwise stable reflectors (Permanent Scatterers, PS) and exploiting long temporal series of interferometric data. Results obtained by processing 55 images acquired by the European Space Agency (ESA) ERS SAR sensors over Southern California show that the PS approach pushes measurement accuracy very close to its theoretical limit (about 1 mm), allowing the description of millimetric deformation phenomena occurring in a complex fault system. A comparison with corresponding displacement time series relative to permanent GPS stations of the Southern California Integrated GPS network (SCIGN) is carried out. Moreover, the pixel-by-pixel character of the PS analysis allows the exploitation of individual phase stable radar targets in low-coherence areas. This makes spaceborne interferometric measurements possible in vegetated areas, as long as a sufficient spatial density of individual isolated man-made structures or exposed rocks is available. The evolution of the Ancona landslide (central Italy) was analysed by processing 61 ERS images acquired in the time span between June 1992 and December 2000. The results have been compared with deformation values detected during optical levelling campaigns ordered by the Municipality of Ancona. The characteristics of PS, GPS and optical levelling surveying are to some extent complementary: a synergistic use of the three techniques could strongly enhance quality and reliability of ground deformation monitoring. D 2002 Elsevier Science B.V. All rights reserved.

419 citations