scispace - formally typeset
Search or ask a question
Author

Stefano Pirandola

Bio: Stefano Pirandola is an academic researcher from University of York. The author has contributed to research in topics: Quantum & Quantum entanglement. The author has an hindex of 51, co-authored 286 publications receiving 14410 citations. Previous affiliations of Stefano Pirandola include Centre for Quantum Technologies & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Abdi et al. as discussed by the authors proposed a modification of the standard entanglement swapping protocol where the generation of entanglements between two distant modes is realized and verified using only local optical measurements.
Abstract: We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements [M. Abdi, S. Pirandola, P. Tombesi, and D. Vitali, Phys. Rev. Lett. 109, 143601 (2012)]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.

32 citations

Journal ArticleDOI
14 Jan 2021
TL;DR: This work provides a composable security analysis in the finite-size regime assuming the realistic but restrictive hypothesis of collective Gaussian attacks and efficiently estimates the parameters of the channel via maximum likelihood estimators and bound the corresponding error in the final secret key rate.
Abstract: The authors investigate the effects of using trusted noise and a finite number of signals for a discrete alphabet CV-QKD protocol assuming collective attacks in a composable framework.

31 citations

Journal ArticleDOI
TL;DR: In this article, the critical number of signal modes after which a non-classical source of light is able to beat any classical source irradiating the same number of signals is investigated.
Abstract: Nonclassical states of light play a central role in many quantum information protocols. Very recently, their quantum features have been exploited to improve the readout of information from digital memories, modeled as arrays of microscopic beam splitters [Pirandola, Phys. Rev. Lett. 106, 090504 (2011)]. In this model of ``quantum reading,'' a nonclassical source of light with Einstein-Podolski-Rosen correlations has been proven to retrieve more information than any classical source. In particular, the quantum-classical comparison has been performed under a global energy constraint, i.e., by fixing the mean total number of photons irradiated over each memory cell. In this paper we provide an alternative analysis which is based on a local energy constraint, meaning that we fix the mean number of photons per signal mode irradiated over the memory cell. Under this assumption, we investigate the critical number of signal modes after which a nonclassical source of light is able to beat any classical source irradiating the same number of signals.

31 citations

Journal ArticleDOI
TL;DR: Gottesman et al. as mentioned in this paper show how to implement this interaction using trapped ions, and how the encoding can be performed on their motional degrees of freedom, and the robustness of the codewords with respect to various experimental imperfections.
Abstract: Recently it has been proposed to construct quantum error-correcting codes that embed a finite-dimensional Hilbert space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables [D. Gottesman et al., Phys. Rev. A 64, 012310 (2001)]. The main difficulty of this continuous variable encoding relies on the physical generation of the quantum codewords. We show that ponderomotive interaction suffices to this end. As a matter of fact, this kind of interaction between a system and a meter causes a frequency change on the meter proportional to the position quadrature of the system. Then, a phase measurement of the meter leaves the system in an eigenstate of the stabilizer generators, provided that system and meter's initial states are suitably prepared. Here we show how to implement this interaction using trapped ions, and how the encoding can be performed on their motional degrees of freedom. The robustness of the codewords with respect to the various experimental imperfections is then analyzed.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered discrete-alphabet encoding schemes for coherent-state quantum key distribution and showed that using just four phase-shifted coherent states is sufficient for generating secret key rates of the order of $4 \times 10^{-3}$ bits per channel use at about 15 dB loss in the presence of realistic excess noise.
Abstract: We consider discrete-alphabet encoding schemes for coherent-state quantum key distribution. The sender encodes the letters of a finite-size alphabet into coherent states whose amplitudes are symmetrically distributed on a circle centered in the origin of the phase space. We study the asymptotic performance of this phase-encoded coherent-state protocol in direct and reverse reconciliation assuming both loss and thermal noise in the communication channel. In particular, we show that using just four phase-shifted coherent states is sufficient for generating secret key rates of the order of $4 \times 10^{-3}$ bits per channel use at about 15 dB loss in the presence of realistic excess noise.

30 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations