scispace - formally typeset
Search or ask a question
Author

Stefano Pirandola

Bio: Stefano Pirandola is an academic researcher from University of York. The author has contributed to research in topics: Quantum & Quantum entanglement. The author has an hindex of 51, co-authored 286 publications receiving 14410 citations. Previous affiliations of Stefano Pirandola include Centre for Quantum Technologies & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
01 Mar 2020
TL;DR: In this article, the authors investigated the performance gap between the classical and quantum rates for networks connected by identity, depolarizing, and erasure channels in the butterfly network and a group of larger networks constructed with butterfly network blocks.
Abstract: We investigate the classical and quantum networking regimes of the butterfly network and a group of larger networks constructed with butterfly network blocks. By considering simultaneous multicasts from a set of senders to a set of receivers, we analyze the corresponding rates for transmitting classical and quantum information through the networks. More precisely, we compare achievable rates (i.e., lower bounds) for classical communication with upper bounds for quantum communication, quantifying the performance gap between the rates for networks connected by identity, depolarizing and erasure channels. For each network considered, we observe a range over which the classical rate non-trivially exceeds the quantum capacity. We find that, by adding butterfly blocks in parallel, the difference between transmitted bits and qubits can be increased up to one extra bit per receiver in the case of perfect transmission (identity channels). Our aim is to provide a quantitative analysis of those network configurations which are particularly disadvantageous for quantum networking, when compared to classical communication. By clarifying the performance of these 'negative cases', we also provide some guidance on how quantum networks should be built.

3 citations

Book ChapterDOI
TL;DR: The role that quantum correlations, as quantified by quantum discord, play in two interesting settings are discussed: quantum cryptography and discerning which unitaries have been applied on a quantum system by taking advantage of knowledge regarding its initial configuration.
Abstract: In this brief review, we discuss the role that quantum correlations, as quantified by quantum discord, play in two interesting settings. The first one is discerning which unitaries have been applied on a quantum system, by taking advantage of knowledge regarding its initial configuration. Here discord captures the ‘quantum’ component of this knowledge, useful only when we have access to a quantum memory. In particular, discord can be used to detect whether an untrusted party has certain quantum capabilities. The second setting is quantum cryptography. Here discord represents an important resource for trusted-noise quantum key distribution and also provides a general upper bound for the optimal secret key rates that are achievable by ideal protocols. In particular, the (two-way assisted) secret key capacity of a lossy bosonic channel exactly coincides with the maximum discord that can be distributed between the remote parties at the two ends of the channel.

3 citations

Posted Content
TL;DR: It is shown that the minimum output entropy for all single-mode Gaussian channels is additive and is attained for Gaussian inputs, including that of the channel with linear loss, thermal noise, and linear amplification.
Abstract: We show that the minimum output entropy for all single-mode Gaussian channels is additive and is attained for Gaussian inputs. This allows the derivation of the channel capacity for a number of Gaussian channels, including that of the channel with linear loss, thermal noise, and linear amplification.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the crucial differences between three different protocols of quantum channel discrimination are clarified, after some confusion has appeared in recent literature, and they are discussed in detail in detail.
Abstract: In this brief note, I clarify the crucial differences between three different protocols of quantum channel discrimination, after some confusion has appeared in recent literature.

3 citations

13 Jan 2011
TL;DR: In this paper, the authors consider the problem of quantum communication mediated by a passive optical refocusing system and show that the presence of the refocusing can substantially enhance the rate of reliable communication with respect to the free-space propagation.
Abstract: We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.

3 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations