scispace - formally typeset
Search or ask a question
Author

Stefano Pirandola

Bio: Stefano Pirandola is an academic researcher from University of York. The author has contributed to research in topics: Quantum & Quantum entanglement. The author has an hindex of 51, co-authored 286 publications receiving 14410 citations. Previous affiliations of Stefano Pirandola include Centre for Quantum Technologies & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a continuous variable (CV), measurement device independent (MDI) quantum key distribution (QKD) protocol is analyzed, enabling three parties to connect for quantum conferencing.
Abstract: Abstract A continuous variable (CV), measurement device independent (MDI) quantum key distribution (QKD) protocol is analyzed, enabling three parties to connect for quantum conferencing. We utilise a generalised Bell detection at an untrusted relay and a postselection procedure, in which distant parties reconcile on the signs of the displacements of the quadratures of their prepared coherent states. We derive the rate of the protocol under a collective pure-loss attack, demonstrating improved rate-distance performance compared to the equivalent non-post-selected protocol. In the symmetric configuration in which all the parties lie the same distance from the relay, we find a positive key rate over 6 km. Such postselection techniques can be used to improve the rate of multi-party quantum conferencing protocols at longer distances at the cost of reduced performance at shorter distances.

2 citations

Journal ArticleDOI
TL;DR: The aim is to provide a quantitative analysis of those network configurations which are particularly disadvantageous for quantum networking, when compared to classical communication, and some guidance on how quantum networks should be built is provided.
Abstract: We investigate the classical and quantum networking regimes of the butterfly network and a group of larger networks constructed with butterfly network blocks. By considering simultaneous multicasts from a set of senders to a set of receivers, we analyze the corresponding rates for transmitting classical and quantum information through the networks. More precisely, we compare achievable rates (i.e., lower bounds) for classical communication with upper bounds for quantum communication, quantifying the performance gap between the rates for networks connected by identity, depolarizing and erasure channels. For each network considered, we observe a range over which the classical rate non-trivially exceeds the quantum capacity. We find that, by adding butterfly blocks in parallel, the difference between transmitted bits and qubits can be increased up to one extra bit per receiver in the case of perfect transmission (identity channels). Our aim is to provide a quantitative analysis of those network configurations which are particularly disadvantageous for quantum networking, when compared to classical communication. By clarifying the performance of these 'negative cases', we also provide some guidance on how quantum networks should be built.

2 citations

Posted Content
20 Sep 2017
TL;DR: This work introduces a measurement-device independent star network which is conveniently based on continuous variable systems and standard linear optics and able to achieve high rates with cheap optical implementation.
Abstract: We introduce a measurement-device independent star network which is conveniently based on continuous variable systems and standard linear optics. Here an arbitrary number of users send modulated coherent states to an untrusted relay where a generalized Bell detection creates multi-partite secret correlations. These correlations are then distilled into a shared secret key to implement a completely-secure quantum conference or, alternatively, a protocol of quantum secret-sharing. Our scheme is composably secure and able to achieve high rates with cheap optical implementation.

2 citations

Posted Content
TL;DR: In this article, the authors consider a quantum relay which is used by two parties to perform several continuous-variable protocols: entanglement swapping, distillation, quantum teleportation, and quantum key distribution.
Abstract: We consider a quantum relay which is used by two parties to perform several continuous-variable protocols: Entanglement swapping, distillation, quantum teleportation, and quantum key distribution. The theory of these protocols is extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise. Even if bipartite entanglement is completely lost at the relay, we show that the various protocols can progressively be reactivated by the separable noise-correlations of the environment. In fact, above a critical amount, these correlations are able to restore the distribution of quadripartite entanglement, which can be localized into an exploitable bipartite form by the action of the relay. Our findings are confirmed by a proof-of-principle experiment and show the potential advantages of non-Markovian effects in a quantum network architecture.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors consider the use of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol and derive the quantum Chernoff bound and limits on detection error probability for both the twomode squeezed vacuum state and the coherent state classical benchmark.
Abstract: Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means. Quantum illumination is an example of this, based on signal–idler entanglement, promising a potential 6 dB advantage in error exponent over its optimal classical counterpart. So far, receiver designs achieving this optimal reception remain elusive with many proposals based on Gaussian processes appearing unable to utilise quantum information contained within Gaussian state sources. This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol. Such a non-Gaussian amplifier offers a means of probabilistically amplifying an incoming signal without the addition of noise. Considering symmetric hypothesis testing, the quantum Chernoff bound is derived and limits on detection error probability is analysed for both the two-mode squeezed vacuum state and the coherent state classical benchmark. Our findings show that in such a scheme the potential quantum advantage is amplified even in regimes where quantum illumination alone offers no advantage, thereby extending its potential use. The same cannot be said for coherent states, whose performances are generally bounded by that without amplification.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations