scispace - formally typeset
Search or ask a question
Author

Stefano Pirandola

Bio: Stefano Pirandola is an academic researcher from University of York. The author has contributed to research in topics: Quantum & Quantum entanglement. The author has an hindex of 51, co-authored 286 publications receiving 14410 citations. Previous affiliations of Stefano Pirandola include Centre for Quantum Technologies & Massachusetts Institute of Technology.


Papers
More filters
16 Feb 2023
TL;DR: In this paper , the authors introduce a general formulation of port-based teleportation in continuous variable systems and study in detail the $N=2$ case, interpreting the resulting channel as an energy truncation and analyzing the kinds of channels that can be naturally simulated after this restriction.
Abstract: Port-based teleportation is generalization of the standard teleportation protocol which does not require unitary operations by the receiver. This comes at the price of requiring $N>1$ entangled pairs, while $N=1$ for the standard teleportation protocol. The lack of correction unitaries allows port-based teleportation to be used as a fundamental theoretical tool to simulate arbitrary channels with a general resource, with applications to study fundamental limits of quantum communication, cryptography and sensing, and to define general programmable quantum computers. Here we introduce a general formulation of port-based teleportation in continuous variable systems and study in detail the $N=2$ case. In particular, we interpret the resulting channel as an energy truncation and analyse the kinds of channels that can be naturally simulated after this restriction.

1 citations

Journal ArticleDOI
TL;DR: This work gives explicit expressions bounding the set of achievable errors, using the trace norm, the fidelity, and the quantum Chernoff bound, and shows that the upper bound is asymptotically tight and the lower bound is exact for pure states.
Abstract: Two types of errors can occur when discriminating pairs of quantum states. Asymmetric state discrimination involves minimizing the probability of one type of error, subject to a constraint on the other. We give explicit expressions bounding the set of achievable errors, using the trace norm, the fidelity, and the quantum Chernoff bound. The upper bound is asymptotically tight and the lower bound is exact for pure states. Unlike asymptotic bounds, our bounds give error values instead of exponents, so can give more precise results when applied to finite-copy state discrimination problems.

1 citations

Posted Content
04 May 2018
TL;DR: It is argued that the article is based on a flawed understanding of the actual workings of a two-way protocol, thus the erroneous conclusions drawn thereof.
Abstract: An author (arXiv:1709.09262 [quant-ph] (2017), Nanoscale Research Letters (2017) 12:552) has recently questioned the security of two-way quantum key distribution schemes by referring to attack strategies which leave no errors in the (raw) key shared by the legitimate parties. We argue that the article is based on a flawed understanding of the actual workings of a two-way protocol, thus the erroneous conclusions drawn thereof.

1 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate a game where a sender (Alice) teleports coherent states to two receivers (Bob and Charlie) through a tripartite Gaussian state.
Abstract: We investigate a game where a sender (Alice) teleports coherent states to two receivers (Bob and Charlie) through a tripartite Gaussian state. The aim of the receivers is to optimize their teleportation fidelities by means of local operations and classical communications. We show that a non-cooperative strategy, corresponding to the standard telecloning protocol, can be outperformed by a cooperative strategy, which gives rise to a novel (cooperative) telecloning protocol.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations