scispace - formally typeset
Search or ask a question
Author

Stefano Regis

Other affiliations: University of Genoa
Bio: Stefano Regis is an academic researcher from Istituto Giannina Gaslini. The author has contributed to research in topics: Metachromatic leukodystrophy & Mutation. The author has an hindex of 21, co-authored 55 publications receiving 1946 citations. Previous affiliations of Stefano Regis include University of Genoa.


Papers
More filters
Journal ArticleDOI
TL;DR: In all five patients studied, unique mutations in one of the genes, STA: these mutations result in the loss of all or part of the protein are reported.
Abstract: Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked recessive disorder characterized by slowly progressing contractures, wasting of skeletal muscle and cardiomyopathy. Heart block is a frequent cause of death. The disease gene has been mapped to distal Xq28. Among many genes in this region, we selected eight transcripts expressed at high levels in skeletal muscle, heart and/or brain as the best candidates for the disease. We now report, in all five patients studied, unique mutations in one of the genes, STA: these mutations result in the loss of all or part of the protein. The EDMD gene encodes a novel serine-rich protein termed emerin, which contains a 20 amino acid hydrophobic domain at the C terminus, similar to that described for many membrane proteins of the secretory pathway involved in vesicular transport.

876 citations

Journal ArticleDOI
TL;DR: This study, reporting one of the largest genotype‐phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian G ALC mutational profile differs significantly from other populations of European origin.
Abstract: The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype-phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region.

93 citations

Journal ArticleDOI
TL;DR: The main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver are described.
Abstract: A large body of data shows that Natural Killer (NK) cells are immune effectors exerting a potent cytolytic activity against tumors and virus infected cells. The discovery and characterization of several inhibitory and activating receptors unveiled most of the mechanisms allowing NK cells to spare healthy cells while selectively attacking abnormal tissues. Nevertheless, the mechanisms ruling NK cell subset recirculation among the different compartments of human body have only lately started to be investigated. This is particularly true for pathological settings such as tumors or infected tissues but also for para-physiological condition like pregnant human uterine mucosa. It is becoming evident that the microenvironment associated to a particular clinical condition can deeply influence the migratory capabilities of NK cells. In this review we describe the main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver. We will also discuss the role played by the chemokine/chemokine receptor axes in the orchestration of physiological events such as NK cell differentiation, lymphoid organ retention/egress and recruitment to decidua during pregnancy.

91 citations

Journal ArticleDOI
TL;DR: Molecular characterization of twelve unrelated patients affected by the autosomal recessive osteosclerotic skeletal dysplasia, Pycnodysostosis, revealed 11 different genotypes, including nine previously unreported ones, spread throughout the whole gene.
Abstract: Molecular characterization of twelve unrelated patients affected by the autosomal recessive osteosclerotic skeletal dysplasia, Pycnodysostosis (cathepsin k deficiency), revealed 11 different genotypes The mutational profile consisted of 12 different mutations, including nine previously unreported ones, spread throughout the whole gene One mutation occurred in regions coding predomain, two affected the prodomain and nine others occurred in the mature domain The novel lesions consisted in six missense mutations c20T>C (pL7P), c494A>G (pQ165R), c580G>A (pG194S), c746T>C (pI249T), c749A>G (pD250G), c955G>T (pG319C), two frameshifts c60_61dupGA (pI21RfsX29), c282dupA (pS95VfsX9) and a splicing mutation c890G>A (r785_890del) The six new missense mutations were examined by western blots of COS-7 cells transfected with mutant CTSK genes The L7P, occurring within the predicted hydrophobic domain of signal peptide, showed a significantly reduced expression level compared to the wild type control These findings suggested that the mutation affected targeting and translocation of the nascent lysosomal protein across the endoplasmatic reticulum membrane The novel amino acid changes were also modeled into the three-dimensional structure that predicted incorrect protein folding for all of them Molecular characterization of the patients is of particular value for genetic counseling of patients and their families as diagnosis of Pycnodysostosis based on enzyme assay is unpractical and thus not offered routinely © 2007 Wiley-Liss, Inc

69 citations

Journal ArticleDOI
TL;DR: The wide phenotypic differences observed within the genotypic groups as well as between siblings implicate a significant contribution of other modifying genetic and/or non‐genetic factors.
Abstract: Gaucher disease (GD), the most prevalent lysosomal storage disease characterized by a remarkable degree of clinical variability, results from deleterious mutations in the glucocerebrosidase gene (GBA). In this paper we report the molecular characterization of 144 unrelated Italian GD patients with the three types of the disease. The allelic frequencies of Italians are reported and the mutation profile is analyzed. Besides the common N370S, L444P, RecNciI, G202R, IVS2+1G>A, D409H, F213I mutations, the different molecular strategies, used for the mutation detection, identified the rare N107L, R131C, R170C, R170P, N188S, S196P, R285C, R285H, W312C, D399N, A446P, IVS10-1G>A, RecDelta55, total gene deletion, as well as 12 mutant alleles that were exclusively present in the Italian population until now: the previously reported R353G, N370S+S488P mosaicism, IVS8(-11delC)-14T>A), Rec I, Y418C, and the seven novel alleles D127X, P159T, V214X, T231R, L354X, H451R, and G202R+M361I. The wide phenotypic differences observed within the genotypic groups as well as between siblings implicate a significant contribution of other modifying genetic and/or non-genetic factors and claim a comprehensive valuation of the patient including clinical., biochemical and molecular investigations for prognosis, appropriate interventive therapy and reliable genetic counseling.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Proximity-dependent biotin identification is a new approach making use of biotin ligase fusion proteins for the identification of both interacting and neighboring proteins in their native cellular environment.
Abstract: We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment.

1,843 citations

Journal ArticleDOI
TL;DR: Melanogenesis is a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes, and its significance extends beyond the mere assignment of a color trait.
Abstract: Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.

1,737 citations

Journal ArticleDOI
TL;DR: Meryon’s observations were neglected for many years for various reasons, and the disorder became eponymously associated with Duchenne in Paris, who detailed the clinical and muscle histology some years later.

1,494 citations

Journal ArticleDOI
TL;DR: This work has mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus, and identified four mutations in LMNA that co-segregate with the disease phenotype in the five families.
Abstract: Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and a cardiomyopathy with conduction blocks which is life-threatening1. Two modes of inheritance exist, X-linked (OMIM 310300) and autosomal dominant (EDMD-AD; OMIM 181350). EDMD-AD is clinically identical to the X-linked forms of the disease2,3,4. Mutations in EMD, the gene encoding emerin, are responsible for the X-linked form5,6. We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus. This region contains the lamin A/C gene (LMNA), a candidate gene encoding two proteins of the nuclear lamina, lamins A and C, produced by alternative splicing7,8. We identified four mutations in LMNA that co-segregate with the disease phenotype in the five families: one nonsense mutation and three missense mutations. These results are the first identification of mutations in a component of the nuclear lamina as a cause of inherited muscle disorder. Together with mutations in EMD (Refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders.

1,264 citations

Journal ArticleDOI
TL;DR: Missense mutations in the rod domain of the lamin A/C gene provide a genetic cause for dilated cardiomyopathy and indicate that this intermediate filament protein has an important role in cardiac conduction and contractility.
Abstract: Background Inherited mutations cause approximately 35 percent of cases of dilated cardiomyopathy; however, few genes associated with this disease have been identified. Previously, we located a gene defect that was responsible for autosomal dominant dilated cardiomyopathy and conduction-system disease on chromosome 1p1–q21, where nuclear-envelope proteins lamin A and lamin C are encoded by the LMNA (lamin A/C) gene. Mutations in the head or tail domain of this gene cause Emery–Dreifuss muscular dystrophy, a childhood-onset disease characterized by joint contractures and in some cases by abnormalities of cardiac conduction during adulthood. Methods We evaluated 11 families with autosomal dominant dilated cardiomyopathy and conduction-system disease. Sequences of the lamin A/C exons were determined in probands from each family, and variants were confirmed by restriction-enzyme digestion. The genotypes of the family members were ascertained. Results Five novel missense mutations were identified: four in the α...

1,236 citations