scispace - formally typeset
Search or ask a question
Author

Steffen J. Glaser

Bio: Steffen J. Glaser is an academic researcher from Technische Universität München. The author has contributed to research in topics: Quantum computer & Optimal control. The author has an hindex of 53, co-authored 301 publications receiving 12661 citations. Previous affiliations of Steffen J. Glaser include Norwich Research Park & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: The application of these pulse engineering methods to design pulse sequences that are robust to experimentally important parameter variations, such as chemical shift dispersion or radiofrequency variations due to imperfections such as rf inhomogeneity is explained.

1,516 citations

Journal ArticleDOI
TL;DR: General pulse sequence elements that achieve sensitivity-enhanced coherence transfer from a heteronucleus to protons of arbitrary multiplicity are introduced and incorporated into heteronuclear correlation experiments, in conjunction with coherence selection by the formation of aheteronuclear gradient echo.
Abstract: General pulse sequence elements that achieve sensitivity-enhanced coherence transfer from a heteronucleus to protons of arbitrary multiplicity are introduced. The building blocks are derived from the sensitivity-enhancement scheme introduced by Cavanagh et al. ((1991) J. Magn. Reson., 91, 429-436), which was used in conjunction with gradient coherence selection by Kay et al. ((1992) J. Am. Chem. Soc., 114, 10663-10665), as well as from a multiple-pulse sequence effecting a heteronuclear planar coupling Hamiltonian. The building blocks are incorporated into heteronuclear correlation experiments, in conjunction with coherence selection by the formation of a heteronuclear gradient echo. This allows for efficient water suppression without the need for water presaturation. The methods are demonstrated in HSQC-type experiments on a sample of a decapeptide in H2O. The novel pulse sequence elements can be incorporated into multidimensional experiments.

744 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the design of pulse sequences for nuclear magnetic resonance spectroscopy as a problem of time optimal control of the unitary propagator, and gave an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems.
Abstract: In this paper, we study the design of pulse sequences for nuclear magnetic resonance spectroscopy as a problem of time optimal control of the unitary propagator. Radio-frequency pulses are used in coherent spectroscopy to implement a unitary transfer between states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. From a general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group. What is the minimum time required to steer the system from some initial point to a specified final point? In nuclear magnetic resonance (NMR) spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two-spin system.

660 citations

Journal ArticleDOI
TL;DR: In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems.
Abstract: It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems We address key challenges and sketch a roadmap for future developments

572 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an updated summary of the roadmap of quantum technologies (QT) and present an overview of the current state-of-the-art quantum technologies.
Abstract: Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hansch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.

443 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
12 Sep 2010-Nature
TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Abstract: Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future

2,301 citations

Journal ArticleDOI
13 Sep 2017-Nature
TL;DR: The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers.
Abstract: Recent progress implies that a crossover between machine learning and quantum information processing benefits both fields. Traditional machine learning has dramatically improved the benchmarking an ...

2,162 citations

Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Book
01 Jan 2009
TL;DR: In this paper, the authors present a comprehensive treatment of modern quantum measurement and measurement-based quantum control, which are vital elements for realizing quantum technology, including quantum information, quantum metrology, quantum control and related fields.
Abstract: The control of individual quantum systems promises a new technology for the 21st century – quantum technology. This book is the first comprehensive treatment of modern quantum measurement and measurement-based quantum control, which are vital elements for realizing quantum technology. Readers are introduced to key experiments and technologies through dozens of recent experiments in cavity QED, quantum optics, mesoscopic electronics, and trapped particles several of which are analyzed in detail. Nearly 300 exercises help build understanding, and prepare readers for research in these exciting areas. This important book will interest graduate students and researchers in quantum information, quantum metrology, quantum control and related fields. Novel topics covered include adaptive measurement; realistic detector models; mesoscopic current detection; Markovian, state-based and optimal feedback; and applications to quantum information processing.

1,765 citations