scispace - formally typeset
Search or ask a question
Author

Steffen Stenger

Bio: Steffen Stenger is an academic researcher from University of Ulm. The author has contributed to research in topics: Mycobacterium tuberculosis & T cell. The author has an hindex of 46, co-authored 119 publications receiving 13155 citations. Previous affiliations of Steffen Stenger include University of Erlangen-Nuremberg & University of California.


Papers
More filters
Journal ArticleDOI
24 Mar 2006-Science
TL;DR: The data support a link between TLRs and vitamin D–mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.
Abstract: In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.

3,242 citations

Journal ArticleDOI
02 Oct 1998-Science
TL;DR: The ability of CTLs to kill intracellular M. tuberculosis was dependent on the presence of granulysin in cytotoxic granules, defining a mechanism by which T cells directly contribute to immunity against intrACEllular pathogens.
Abstract: Cytolytic T lymphocytes (CTLs) kill intracellular pathogens by a granule-dependent mechanism. Granulysin, a protein found in granules of CTLs, reduced the viability of a broad spectrum of pathogenic bacteria, fungi, and parasites in vitro. Granulysin directly killed extracellular Mycobacterium tuberculosis, altering the membrane integrity of the bacillus, and, in combination with perforin, decreased the viability of intracellular M. tuberculosis. The ability of CTLs to kill intracellular M. tuberculosis was dependent on the presence of granulysin in cytotoxic granules, defining a mechanism by which T cells directly contribute to immunity against intracellular pathogens.

1,011 citations

Journal ArticleDOI
TL;DR: It is demonstrated that cathelicidin is required for the 1,25D3-triggered antimicrobial activity against intracellular M. tuberculosis.
Abstract: Host defense against intracellular pathogens depends upon innate and adaptive antimicrobial effector pathways. TLR2/1-activation of monocytes leads to the vitamin D-dependent production of cathelicidin and, at the same time, an antimicrobial activity against intracellular Mycobacterium tuberculosis. To determine whether induction of cathelicidin was required for the vitamin D-triggered antimicrobial activity, the human monocytic cell line THP-1 was infected with M. tuberculosis H37Ra and then activated with the active vitamin D hormone 1,25-dihydroxyvitamin D(3) (1,25D(3)). 1,25D(3) stimulation resulted in antimicrobial activity against intracellular M. tuberculosis and expression of cathelicidin mRNA and protein. Using small interfering RNA (siRNA) specific for cathelicidin, 1,25D(3)-induced cathelicidin mRNA and protein expressions were efficiently knocked down, whereas a nonspecific siRNA control had little effect. Finally, 1,25D(3)-induced antimicrobial activity was completely inhibited in the presence of siRNA against cathelicidin, instead leading to enhanced intracellular growth of mycobacteria. These data demonstrate that cathelicidin is required for the 1,25D(3)-triggered antimicrobial activity against intracellular M. tuberculosis.

770 citations

Journal ArticleDOI
23 Feb 2001-Science
TL;DR: It is shown that TLR2 activation leads to killing of intracellular Mycobacterium (M.) tuberculosis in both mouse and human macrophages, providing evidence that mammalian TLRs have retained not only the structural features of Drosophila Toll that allow them to respond to microbial ligands, but also the ability directly to activate antimicrobial effector pathways at the site of infection.
Abstract: The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

744 citations

Journal ArticleDOI
13 Jun 1997-Science
TL;DR: The data indicate that two phenotypically distinct subsets of human cytolytic T lymphocytes use different mechanisms to kill infected cells and contribute in different ways to host defense against intracellular infection.
Abstract: In analyzing mechanisms of protection against intracellular infections, a series of human CD1-restricted T cell lines of two distinct phenotypes were derived. Both CD4 − CD8 − (double-negative) T cells and CD8 + T cells efficiently lysed macrophages infected with Mycobacterium tuberculosis . The cytotoxicity of CD4 − CD8 − T cells was mediated by Fas-FasL interaction and had no effect on the viability of the mycobacteria. The CD8 + T cells lysed infected macrophages by a Fas-independent, granule-dependent mechanism that resulted in killing of bacteria. These data indicate that two phenotypically distinct subsets of human cytolytic T lymphocytes use different mechanisms to kill infected cells and contribute in different ways to host defense against intracellular infection.

527 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The role of vitamin D in skeletal and nonskeletal health is considered and strategies for the prevention and treatment ofitamin D deficiency are suggested.
Abstract: Once foods in the United States were fortified with vitamin D, rickets appeared to have been conquered, and many considered major health problems from vitamin D deficiency resolved. But vitamin D deficiency is common. This review considers the role of vitamin D in skeletal and nonskeletal health and suggests strategies for the prevention and treatment of vitamin D deficiency.

11,849 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: Considering that vitamin D deficiency is very common in all age groups and that few foods contain vitamin D, the Task Force recommended supplementation at suggested daily intake and tolerable upper limit levels, depending on age and clinical circumstances.
Abstract: Objective: The objective was to provide guidelines to clinicians for the evaluation, treatment, and prevention of vitamin D deficiency with an emphasis on the care of patients who are at risk for deficiency. Participants: The Task Force was composed of a Chair, six additional experts, and a methodologist. The Task Force received no corporate funding or remuneration. Consensus Process: Consensus was guided by systematic reviews of evidence and discussions during several conference calls and e-mail communications. The draft prepared by the Task Force was reviewed successively by The Endocrine Society's Clinical Guidelines Subcommittee, Clinical Affairs Core Committee, and cosponsoring associations, and it was posted on The Endocrine Society web site for member review. At each stage of review, the Task Force received written comments and incorporated needed changes. Conclusions: Considering that vitamin D deficiency is very common in all age groups and that few foods contain vitamin D, the Task Force recomme...

7,113 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations