scispace - formally typeset
Search or ask a question
Author

Stein Bergan

Bio: Stein Bergan is an academic researcher from Oslo University Hospital. The author has contributed to research in topics: Transplantation & Tacrolimus. The author has an hindex of 27, co-authored 96 publications receiving 2128 citations. Previous affiliations of Stein Bergan include University of Limoges & Rikshospitalet–Radiumhospitalet.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that considerable advances in the different fields of tacrolimus monitoring have been achieved during this last decade, and the Expert Committee concludes that Continued efforts should focus on the opportunities to implement in clinical routine the combination of new standardized PK approaches with PG, and valid biomarkers to further personalize tacolimus therapy and to improve long-term outcomes for treated patients.
Abstract: Ten years ago, a consensus report on the optimization of tacrolimus was published in this journal. In 2017, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicity (IATDMCT) decided to issue an updated consensus report considering the most relevant advances in tacrolimus pharmacokinetics (PK), pharmacogenetics (PG), pharmacodynamics, and immunologic biomarkers, with the aim to provide analytical and drug-exposure recommendations to assist TDM professionals and clinicians to individualize tacrolimus TDM and treatment. The consensus is based on in-depth literature searches regarding each topic that is addressed in this document. Thirty-seven international experts in the field of TDM of tacrolimus as well as its PG and biomarkers contributed to the drafting of sections most relevant for their expertise. Whenever applicable, the quality of evidence and the strength of recommendations were graded according to a published grading guide. After iterated editing, the final version of the complete document was approved by all authors. For each category of solid organ and stem cell transplantation, the current state of PK monitoring is discussed and the specific targets of tacrolimus trough concentrations (predose sample C0) are presented for subgroups of patients along with the grading of these recommendations. In addition, tacrolimus area under the concentration-time curve determination is proposed as the best TDM option early after transplantation, at the time of immunosuppression minimization, for special populations, and specific clinical situations. For indications other than transplantation, the potentially effective tacrolimus concentrations in systemic treatment are discussed without formal grading. The importance of consistency, calibration, proficiency testing, and the requirement for standardization and need for traceability and reference materials is highlighted. The status for alternative approaches for tacrolimus TDM is presented including dried blood spots, volumetric absorptive microsampling, and the development of intracellular measurements of tacrolimus. The association between CYP3A5 genotype and tacrolimus dose requirement is consistent (Grading A I). So far, pharmacodynamic and immunologic biomarkers have not entered routine monitoring, but determination of residual nuclear factor of activated T cells-regulated gene expression supports the identification of renal transplant recipients at risk of rejection, infections, and malignancy (B II). In addition, monitoring intracellular T-cell IFN-g production can help to identify kidney and liver transplant recipients at high risk of acute rejection (B II) and select good candidates for immunosuppression minimization (B II). Although cell-free DNA seems a promising biomarker of acute donor injury and to assess the minimally effective C0 of tacrolimus, multicenter prospective interventional studies are required to better evaluate its clinical utility in solid organ transplantation. Population PK models including CYP3A5 and CYP3A4 genotypes will be considered to guide initial tacrolimus dosing. Future studies should investigate the clinical benefit of time-to-event models to better evaluate biomarkers as predictive of personal response, the risk of rejection, and graft outcome. The Expert Committee concludes that considerable advances in the different fields of tacrolimus monitoring have been achieved during this last decade. Continued efforts should focus on the opportunities to implement in clinical routine the combination of new standardized PK approaches with PG, and valid biomarkers to further personalize tacrolimus therapy and to improve long-term outcomes for treated patients.

338 citations

Journal ArticleDOI
TL;DR: Atorvastatin is increasingly used as a cholesterol‐lowering agent in solid organ transplant recipients receiving cyclosporine A (CsA) and the potential bilateral pharmacokinetic interaction in renal transplant recipients has not previously been examined.

130 citations

Journal ArticleDOI
TL;DR: The results support the use of pre-transplant CYP3A5 genotyping to improve initial dosing of Tac, and suggest that Tac dosing may be further individualized by additional POR and PPARA genotypes.
Abstract: Purpose Tacrolimus (Tac) and cyclosporine (CsA) are mainly metabolized by CYP3A4 and CYP3A5. Several studies have demonstrated an association between the CYP3A5 genotype and Tac dose requirements. Recently, CYP3A4, PPARA, and POR gene variants have been shown to influence CYP3A metabolism. The present study investigated potential associations between CYP3A5*3, CYP3A4*22, PPARA c.209-1003G>A and c.208 + 3819A>G, and POR*28 alleles and dose-adjusted concentrations (C/D) of Tac and CsA in 177 renal transplant patients early post-transplant.

112 citations

Journal ArticleDOI
TL;DR: Fat-free mass, CYP3A5 genotype, sex, age and time after transplant influence the tacrolimus individual dose requirement, and hematocrit is a key factor in the interpretation of tacolimus whole blood concentrations.
Abstract: Purpose To identify patient characteristics that influence tacrolimus individual dose requirement in kidney transplant recipients.

89 citations

Journal ArticleDOI
TL;DR: The proportion of concentrations per patient within the target range was significantly higher with computerized dosing than with conventional dosing, both in standard risk patients and in high-risk patients.
Abstract: Background Early after renal transplantation, it is often challenging to achieve and maintain tacrolimus concentrations within the target range. Computerized dose individualization using population pharmacokinetic models may be helpful. The objective of this study was to prospectively evaluate the target concentration achievement of tacrolimus using computerized dosing compared with conventional dosing performed by experienced transplant physicians. Methods A single-center, prospective study was conducted. Renal transplant recipients were randomized to receive either computerized or conventional tacrolimus dosing during the first 8 weeks after transplantation. The median proportion of tacrolimus trough concentrations within the target range was compared between the groups. Standard risk (target, 3-7 μg/L) and high-risk (8-12 μg/L) recipients were analyzed separately. Results Eighty renal transplant recipients were randomized, and 78 were included in the analysis (computerized dosing (n = 39): 32 standard risk/7 high-risk, conventional dosing (n = 39): 35 standard risk/4 high-risk). A total of 1711 tacrolimus whole blood concentrations were evaluated. The proportion of concentrations per patient within the target range was significantly higher with computerized dosing than with conventional dosing, both in standard risk patients (medians, 90% [95% confidence interval {95% CI}, 84-95%] vs 78% [95% CI, 76-82%], respectively, P Conclusions Computerized dose individualization improves target concentration achievement of tacrolimus after renal transplantation. The computer software is applicable as a clinical dosing tool to optimize tacrolimus exposure and may potentially improve long-term outcome.

85 citations


Cited by
More filters
01 Aug 2004

1,022 citations

Journal ArticleDOI
TL;DR: 6-MP metabolite levels and TPMT genotyping may assist clinicians in optimizing therapeutic response to 6-MP and identifying individuals at increased risk for drug-induced toxicity.

971 citations

Journal ArticleDOI
TL;DR: The intricate genetics of the CYP2D6 polymorphism is becoming apparent at ever greater detail, applications in clinical practice are still rare, and more clinical studies are needed to show where patients benefit from drug dose adjustment based on their genotype.
Abstract: Of about one dozen human P450 s that catalyze biotransformations of xenobiotics, CYP2D6 is one of the more important ones based on the number of its drug substrates. It shows a very high degree of interindividual variability, which is primarily due to the extensive genetic polymorphism that influences expression and function. This so-called debrisoquine/sparteine oxidation polymorphism has been extensively studied in many different populations and over 80 alleles and allele variants have been described. CYP2D6 protein and enzymatic activity is completely absent in less than 1% of Asian people and in up to 10% of Caucasians with two null alleles, which do not encode a functional P450 protein product. The resulting "poor metabolizer" (PM) phenotype is characterized by the inability to use CYP2D6-dependent metabolic pathways for drug elimination, which affect up to 20% of all clinically used drugs. The consequences are increased risk of adverse drug reactions or lack of therapeutic response. Today, genetic testing predicts the PM phenotype with over 99% certainty. At the other extreme, the "Ultrarapid Metabolizer" (UM) phenotype can be caused by alleles carrying multiple gene copies. "Intermediate Metabolizers" (IM) are severely deficient in their metabolism capacity compared to normal "Extensive Metabolizers" (EM), but in contrast to PMs they express a low amount of residual activity due to the presence of at least one partially deficient allele. Whereas the intricate genetics of the CYP2D6 polymorphism is becoming apparent at ever greater detail, applications in clinical practice are still rare. More clinical studies are needed to show where patients benefit from drug dose adjustment based on their genotype. Computational approaches are used to predict and rationalize substrate specificity and enzymatic properties of CYP2D6. Pharmacophore modeling of ligands and protein homology modeling are two complementary approaches that have been applied with some success. CYP2D6 is not only expressed in liver but also in the gut and in brain neurons, where endogenous substrates with high-turnover have been found. Whether and how brain functions may be influenced by polymorphic expression are interesting questions for the future.

771 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the OATP transporters, their substrate and inhibitor specificities, as well as pharmacogenetics can be found in this paper, where a single nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1 gene encoding OATTP1B 1 decreases the ability of OATB11 to transport active simvastatin acid from portal circulation into the liver.
Abstract: Membrane transporters are now recognized as important determinants of the transmembrane passage of drugs. Organic anion transporting polypeptides (OATP) form a family of influx transporters expressed in various tissues important for pharmacokinetics. Of the 11 human OATP transporters, OATP1B1, OATP1B3 and OATP2B1 are expressed on the sinusoidal membrane of hepatocytes and can facilitate the liver uptake of their substrate drugs. OATP1A2 is expressed on the luminal membrane of small intestinal enterocytes and at the blood-brain barrier, potentially mediating drug transport at these sites. Several clinically used drugs have been identified as substrates of OATP transporters (e.g. many statins are substrates of OATP1B1). Some drugs may inhibit OATP transporters (e.g. cyclosporine) causing pharmacokinetic drug–drug interactions. Moreover, genetic variability in genes encoding OATP transporters can result in marked inter-individual differences in pharmacokinetics. For example, a single nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1 gene encoding OATP1B1 decreases the ability of OATP1B1 to transport active simvastatin acid from portal circulation into the liver, resulting in markedly increased plasma concentrations of simvastatin acid and an enhanced risk of simvastatin-induced myopathy. SLCO1B1 polymorphism also affects the pharmacokinetics of many other, but not all (fluvastatin), statins and that of the antidiabetic drug repaglinide, the antihistamine fexofenadine and the endothelin A receptor antagonist atrasentan. This review compiles the current knowledge about the expression and function of human OATP transporters, their substrate and inhibitor specificities, as well as pharmacogenetics.

759 citations