scispace - formally typeset
Search or ask a question
Author

Stener Lie

Bio: Stener Lie is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: CZTS & Kesterite. The author has an hindex of 11, co-authored 15 publications receiving 470 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the substitution of copper atoms by silver, incorporated into the crystal lattice through a solution processable method, was shown to improve the grain size, enhance the depletion width of the pn-junction, and reduce the concentration of antisite defect states.
Abstract: Recently, considerable attention in the development of Cu2ZnSnS4 (CZTS)-based thin-film solar cells has been given to the reduction of antisite defects via cation substitution. In this Letter, we report the substitution of copper atoms by silver, incorporated into the crystal lattice through a solution processable method. We observe an increase in open-circuit voltage (VOC) by 50 mV and an accompanying rise in device efficiency from 4.9% to 7.2%. The incorporation of Ag is found to improve the grain size, enhance the depletion width of the pn-junction, and reduce the concentration of antisite defect states. This work demonstrates the promising role of Ag in reducing the VOC deficit of Cu-kesterite thin-film solar cells.

123 citations

Journal ArticleDOI
29 Aug 2019
TL;DR: In this paper, the authors reviewed extrinsic doping and alloying concepts for kesterite absorbers with the focus on those that do not alter the parent zinc-blende derived kesterites structure.
Abstract: Attempts to improve the efficiency of kesterite solar cells by changing the intrinsic stoichiometry have not helped to boost the device efficiency beyond the current record of 12.6%. In this light, the addition of extrinsic elements to the Cualt;subagt;2alt;/subagt;ZnSn(S,Se)alt;subagt;4alt;/subagt; matrix in various quantities has emerged as a popular topic aiming to ameliorate electronic properties of the solar cell absorbers. This article reviews extrinsic doping and alloying concepts for kesterite absorbers with the focus on those that do not alter the parent zinc-blende derived kesterite structure. The latest state-of-the-art of possible extrinsic elements is presented in the order of groups of the Periodic Table. The highest reported solar cell efficiencies for each extrinsic dopant are tabulated at the end. Several dopants like alkali elements and substitutional alloying with Ag, Cd or Ge have been shown to improve the device performance of kesterite solar cells as compared to the nominally undoped references, although it is often difficult to differentiate between pure electronic effects and other possible influences such as changes in the crystallization path, deviations in matrix composition and presence of alkali dopants coming from the substrates. The review is concluded with a suggestion to intensify efforts for identifying intrinsic defects that negatively affect electronic properties of the kesterite absorbers, and, if identified, to test extrinsic strategies that may compensate these defects. Characterization techniques must be developed and widely used to reliably access semiconductor absorber metrics such as the quasi-fermi level splitting, defect concentration and their energetic position, and carrier lifetime in order to assist in search for effective doping/alloying strategies.

102 citations

Journal ArticleDOI
21 Mar 2018-Joule
TL;DR: In this article, a photocathode design consisting of solution-processed Cu 2 Cd 04 Zn 06 SnS 4 (CCZTS) photoabsorber coated with CdS/TiMo/Pt is reported to yield a photocurrent of 17 mA cm −2 at 0 V RHE, which is at least 3 times higher than pristine Cu 2 ZnSnS 4 .

91 citations

Journal ArticleDOI
TL;DR: In this article, Bismuth-based double perovskite Cs2AgBiBr6 was shown to have strong deformation potential by acoustic phonons in the latter through transient reflection, time-resolved terahertz measurements, and density functional theory calculations.
Abstract: Bismuth-based double perovskite Cs2AgBiBr6 is regarded as a potential candidate for low-toxicity, high-stability perovskite solar cells. However, its performance is far from satisfactory. Albeit being an indirect bandgap semiconductor, we observe bright emission with large bimolecular recombination coefficient (reaching 4.5 ± 0.1 × 10−11 cm3 s−1) and low charge carrier mobility (around 0.05 cm2 s−1 V−1). Besides intermediate Frohlich couplings present in both Pb-based perovskites and Cs2AgBiBr6, we uncover evidence of strong deformation potential by acoustic phonons in the latter through transient reflection, time-resolved terahertz measurements, and density functional theory calculations. The Frohlich and deformation potentials synergistically lead to ultrafast self-trapping of free carriers forming polarons highly localized on a few units of the lattice within a few picoseconds, which also breaks down the electronic band picture, leading to efficient radiative recombination. The strong self-trapping in Cs2AgBiBr6 could impose intrinsic limitations for its application in photovoltaics.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical assessment of the key components needed to scale up PEC water splitting systems such as materials efficiency, cost, elemental abundancy, stability, fuel separation, device operability, cell architecture, and techno-economic aspects of the systems are placed on.
Abstract: Solar water splitting is a promising approach to transform sunlight into renewable, sustainable and green hydrogen energy. There are three representative ways of transforming solar radiation into molecular hydrogen, which are the photocatalytic (PC), photoelectrochemical (PEC), and photovoltaic–electrolysis (PV–EC) routes. Having the future perspective of green hydrogen economy in mind, this review article discusses devices and systems for solar-to-hydrogen production including comparison of the above solar water splitting systems. The focus is placed on a critical assessment of the key components needed to scale up PEC water splitting systems such as materials efficiency, cost, elemental abundancy, stability, fuel separation, device operability, cell architecture, and techno-economic aspects of the systems. The review follows a stepwise approach and provides (i) a summary of the basic principles and photocatalytic materials employed for PEC water splitting, (ii) an extensive discussion of technologies, procedures, and system designs, and (iii) an introduction to international demonstration projects, and the development of benchmarked devices and large-scale prototype systems. The task of scaling up of laboratory overall water splitting devices to practical systems may be called “an artificial photosynthetic leaf-to-farm challenge”.

640 citations

Journal ArticleDOI
TL;DR: This review places PEC in context with these competing technologies and highlights key advantages of PEC systems, and offers an outlook of how thin film-based PEC studies could lead to commercially viable water splitting systems.
Abstract: To accelerate the deployment of hydrogen produced by renewable solar energy, several technologies have been competitively developed, including photoelectrochemical (PEC), photocatalytic, and photovoltaic-electrolysis routes. In this review, we place PEC in context with these competing technologies and highlight key advantages of PEC systems. After defining the unique performance metrics of the PEC water splitting system, recently developed strategies for enhancing each performance metric, such as the photocurrent density, photovoltage, fill factor, and stability are surveyed in conjunction with the relevant theoretical aspects. In addition, various advanced characterization methods are discussed, including recently developed in situ techniques, allowing us to understand not only the basic properties of materials but also diverse photophysical phenomena underlying the PEC system. Based on the insights gained from these advanced characterization techniques, we not only provide a resource for researchers in the field as well as those who want to join the field, but also offer an outlook of how thin film-based PEC studies could lead to commercially viable water splitting systems.

332 citations

Journal ArticleDOI
TL;DR: Kesterite is currently the most promising emerging fully inorganic thin film photovoltaic technology based on critical raw-material-free and sustainable solutions and doping and alloying strategies are proposed as critical for enhancing the conversion efficiency of kesterite.
Abstract: The latest progress and future perspectives of thin film photovoltaic kesterite technology are reviewed herein. Kesterite is currently the most promising emerging fully inorganic thin film photovoltaic technology based on critical raw-material-free and sustainable solutions. The positioning of kesterites in the frame of the emerging inorganic solar cells is first addressed, and the recent history of this family of materials briefly described. A review of the fast progress achieved earlier this decade is presented, toward the relative slowdown in the recent years partly explained by the large open-circuit voltage (VOC ) deficit recurrently observed even in the best solar cell devices in the literature. Then, through a comparison with the close cousin Cu(In,Ga)Se2 technology, doping and alloying strategies are proposed as critical for enhancing the conversion efficiency of kesterite. In the second section herein, intrinsic and extrinsic doping, as well as alloying strategies are reviewed, presenting the most relevant and recent results, and proposing possible pathways for future implementation. In the last section, a review on technological applications of kesterite is presented, going beyond conventional photovoltaic devices, and demonstrating their suitability as potential candidates in advanced tandem concepts, photocatalysis, thermoelectric, gas sensing, etc.

305 citations

Journal ArticleDOI
TL;DR: This review summarizes developments in BiVO4 photoanodes in the past 10 years, in which time it has continuously broken its own performance records for PEC water oxidation.
Abstract: Photoelectrochemical (PEC) cells for solar-energy conversion have received immense interest as a promising technology for renewable hydrogen production. Their similarity to natural photosynthesis, utilizing sunlight and water, has provoked intense research for over half a century. Among many potential photocatalysts, BiVO4 , with a bandgap of 2.4-2.5 eV, has emerged as a highly promising photoanode material with a good chemical stability, environmental inertness, and low cost. Unfortunately, its charge transport properties are modest, at most a hole diffusion length (Lp ) of ≈70 nm. However, recent rapid developments in multiple modification strategies have elevated it to a position as the most promising metal oxide photoanode material. This review summarizes developments in BiVO4 photoanodes in the past 10 years, in which time it has continuously broken its own performance records for PEC water oxidation. Effective modification techniques are discussed, including synthesis of nanostructures/nanopores, external/internal doping, heterojunction fabrication, surface passivation, and cocatalysts. Tandem systems for unassisted solar water splitting and PEC production of value-added chemicals are also discussed.

296 citations

Journal ArticleDOI
TL;DR: This review aims to summarize efforts in this area, with a focus on materials-related considerations, and pays particular attention to strategies proposed to address the stability and catalytic issues, which are two key factors limiting the implementation of efficient photoelectrode materials.
Abstract: Photoelectrochemical (PEC) water splitting has been intensively studied in the past decades as a promising method for large-scale solar energy storage. Among the various issues that limit the progress of this field, the lack of photoelectrode materials with suitable properties in all aspects of light absorption, charge separation and transport, and charge transfer is a key challenge, which has attracted tremendous research attention. A large variety of compositions, in different forms, have been tested. This review aims to summarize efforts in this area, with a focus on materials-related considerations. Issues discussed by this review include synthesis, optoelectronic properties, charge behaviors and catalysis. In the recognition that thin-film materials are representative model systems for the study of these issues, we elected to focus on this form, so as to provide a concise and coherent account on the different strategies that have been proposed and tested. Because practical implementation is of paramount importance to the eventual realization of using solar fuel for solar energy storage, we pay particular attention to strategies proposed to address the stability and catalytic issues, which are two key factors limiting the implementation of efficient photoelectrode materials. To keep the overall discussion focused, all discussions were presented within the context of water splitting reactions. How the thin-film systems may be applied for fundamental studies of the water splitting chemical mechanisms and how to use the model system to test device engineering design strategies are discussed.

197 citations