scispace - formally typeset
Search or ask a question
Author

Stephan K. W. Dertinger

Bio: Stephan K. W. Dertinger is an academic researcher from Harvard University. The author has contributed to research in topics: Chaotic mixing & Reynolds number. The author has an hindex of 10, co-authored 12 publications receiving 6951 citations.

Papers
More filters
Journal ArticleDOI
25 Jan 2002-Science
TL;DR: This work presents a passive method for mixing streams of steady pressure-driven flows in microchannels at low Reynolds number, and uses bas-relief structures on the floor of the channel that are easily fabricated with commonly used methods of planar lithography.
Abstract: It is difficult to mix solutions in microchannels. Under typical operating conditions, flows in these channels are laminar—the spontaneous fluctuations of velocity that tend to homogenize fluids in turbulent flows are absent, and molecular diffusion across the channels is slow. We present a passive method for mixing streams of steady pressure-driven flows in microchannels at low Reynolds number. Using this method, the length of the channel required for mixing grows only logarithmically with the Pe «clet number, and hydrodynamic dispersion along the channel is reduced relative to that in a simple, smooth channel. This method uses bas-relief structures on the floor of the channel that are easily fabricated with commonly used methods of planar lithography.

3,269 citations

Journal ArticleDOI
07 Oct 2000-Langmuir
TL;DR: In this paper, the authors describe a simple, versatile method of generating gradients in composition in solution or on surfaces using microfluidic systems based on controlled diffusive mixing of species in solutions that are flowing laminarly, at low Reynolds number, inside a network of microchannels.
Abstract: This paper describes a simple, versatile method of generating gradients in composition in solution or on surfaces using microfluidic systems. This method is based on controlled diffusive mixing of species in solutions that are flowing laminarly, at low Reynolds number, inside a network of microchannels. We demonstrate the use of this procedure to generate (1) gradients in the compositions of solutions, measured directly by colorimetric assays and (2) gradients in topography of the surfaces produced by generating concentration gradients of etching reagents, and then using these gradients to etch profiles into the substrate. The lateral dimensions of the gradients examined here, which went from 350 to 900 μm, are determined by the width of the microchannels. Gradients of different size, resolution, and shape have been generated using this method. The shape of the gradients can be changed continuously (dynamic gradients) by varying the relative flow velocities of the input streams of fluids. The method is ex...

961 citations

Journal ArticleDOI
TL;DR: A device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors is described, providing a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.
Abstract: Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero ("cliff" gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant ("hill" gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.

924 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the generation of gradients having complex shapes in solution using microfluidic networks, which can be useful in both biological and nonbiological research.
Abstract: This paper describes the generation of gradients having complex shapes in solution using microfluidic networks. Flowing multiple streams of fluid each carrying different concentrations of substances laminarly and side-by-side generated step concentration gradients perpendicular to the direction of the flow. Appropriately designed networks of microchannels for controlled diffusive mixing of substances generated a range of shapes for the gradients, including linear, parabolic, and periodic. The lateral dimensions of the gradients ranged from 900 to 2200 μm. This paper also demonstrates the generation of overlapping gradients composed of different species. Since solutions in the microfluidic network exist as steady states and are continuously renewed, the gradients established in the capillaries are spatially and temporally constant and can be maintained easily for periods of hours. Using laminar flow to generate gradients should be useful in both biological and nonbiological research.

839 citations

Journal ArticleDOI
TL;DR: This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels, and showed that axon specification is oriented in the direction of increasing surface density of laminin.
Abstract: Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels. Gradients that range from pure laminin to pure BSA were formed in solution by using a network of microchannels, and these proteins were allowed to adsorb onto a homogeneous layer of poly-l-lysine. Rat hippocampal neurons were cultivated on these substrate-bound gradients. Analysis of optical images of these neurons showed that axon specification is oriented in the direction of increasing surface density of laminin. Linear gradients in laminin adsorbed from a gradient in solution having a slope of ∇[laminin] > about 0.06 μg (ml⋅μm)−1 (defined by dividing the change of concentration of laminin in solution over the distance of the gradient) orient axon specification, whereas those with ∇[laminin] < about 0.06 μg (ml⋅μm)−1 have no effect.

451 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Abstract: Microfluidic devices for manipulating fluids are widespread and finding uses in many scientific and industrial contexts. Their design often requires unusual geometries and the interplay of multiple physical effects such as pressure gradients, electrokinetics, and capillarity. These circumstances lead to interesting variants of well-studied fluid dynamical problems and some new fluid responses. We provide an overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows. We highlight topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.

3,307 citations

Journal ArticleDOI
TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Abstract: ▪ Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (≥50 μm), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.

2,659 citations

Journal ArticleDOI
TL;DR: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS).
Abstract: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The methods and applications described focus on the exploitation of the physical and chemical properties of PDMS in the fabrication or actuation of the devices. Fabrication of channels in PDMS is simple, and it can be used to incorporate other materials and structures through encapsulation or sealing (both reversible and irreversible).

2,490 citations