scispace - formally typeset
Search or ask a question
Author

Stephan Katzenschlager

Other affiliations: Heidelberg University
Bio: Stephan Katzenschlager is an academic researcher from University Hospital Heidelberg. The author has contributed to research in topics: Medicine & Meta-analysis. The author has an hindex of 3, co-authored 4 publications receiving 35 citations. Previous affiliations of Stephan Katzenschlager include Heidelberg University.

Papers
More filters
Journal ArticleDOI
TL;DR: A systematic review and meta-analysis of commercially available rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 up until 30 April 2021 was conducted in this paper.
Abstract: Background SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies’ heterogeneity in design and reporting. Conclusions In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.

181 citations

Posted ContentDOI
01 Mar 2021-medRxiv
TL;DR: In this article, a systematic review and meta-analysis of commercially available rapid diagnostic tests (Ag-RDTs) is presented, where the clinical accuracy (sensitivity and specificity) of these tests are assessed.
Abstract: Background SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods We registered the review on PROSPERO (Registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix and bioRvix, FINDdx) for publications up until December 11th, 2020. Descriptive analyses of all studies were performed and when more than four studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcriptase polymerase chain reaction testing. We assessed heterogeneity by subgroup analyses ((1) performed con-form with manufacturer’s instructions for use (IFU) or not, (2) symptomatic vs. asymptomatic, (3) duration of symptoms less than seven days vs. more than seven days, (4) Ct-value Results From a total of 11,715 articles, we extracted 98 analytical and clinical data sets. 74 clinical accuracy data sets were evaluated that included 31,202 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity was 73.8% (CI 68.6 to 78.5). If analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions using fresh upper respiratory swab samples, the sensitivity increased to 79.1% (95%CI 75.0 to 82.8). The SD Biosensor Standard Q and Abbott Panbio showed the highest sensitivity with 81.7% and 72.7%, respectively. The best Ag-RDT performance was found with nasopharyngeal sampling (77.3%, CI 72.0 to 81.9) in comparison to other sample types (e.g., anterior nasal or mid turbinate 63.5%, CI 49.5 to 75.5). Testing in the first week from symptom onset resulted in higher sensitivity (87.5%, CI 86.0 to 89.1) compared to testing after one week (64.1%, CI 54.4 to 73.8). The tests performed markedly better on samples with lower Ct-values, i.e., Conclusion As Ag-RDTs detect most cases within the first week of symptom onset and those with high viral load, they can have high utility for screening purposes in the early phase of disease, and thus can be a valuable tool to fight the spread of SARS-CoV-2. Standardization of conduct and reporting of clinical accuracy studies would improve comparability and use of data. Summary In this living systematic review we analyzed 98 data sets for performance of SARS-CoV-2 Ag-RDTs compared to RT-PCR. Best-performing tests achieved a sensitivity of 81.7%. Highest sensitivity was found in patients within seven days of symptom onset when NP swabs were utilized.

166 citations

Journal ArticleDOI
29 Jul 2021-PLOS ONE
TL;DR: In this article, a systematic review and meta-analysis was conducted to assess demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19 in over 40 million people globally with variable clinical outcomes.
Abstract: Background COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. Methods This systematic review was registered at PROSPERO under CRD42020177154. We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. Results Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10 mg/L, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49 U/L, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88 pg/mL, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 to 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). Discussion This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors that predict severe COVID-19 outcomes and will inform clinical scores to support early decision-making.

34 citations

Posted ContentDOI
12 Nov 2020-medRxiv
TL;DR: This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors in predicting severe COVID-19 outcomes and will inform decision analytical tools to support clinical decision-making.
Abstract: Background COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. Methods We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. Results Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 - 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). Discussion This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors in predicting severe COVID-19 outcomes and will inform decision analytical tools to support clinical decision-making. Summary In this systematic review we meta-analyzed 88 articles for risk factors of ICU admission and mortality in COVID-19. We found age, cerebrovascular disease, CRP, LDH and cTnI are the most important risk-factors for ICU admission or mortality.

24 citations

Journal ArticleDOI
TL;DR: Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all when high viral loads are present, they are especially useful to detect persons with high viral load who are most likely to transmit the virus.
Abstract: Background Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients’ symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies’ heterogeneity in viral load assessment and sample origination. Conclusions Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.

18 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: The first in a two-part series on COVID-19 updates as mentioned in this paper provides a focused overview of the presentation and evaluation of the coronavirus disease of 2019 for emergency clinicians.
Abstract: Coronavirus disease of 2019 (COVID-19) has resulted in millions of cases worldwide. As the pandemic has progressed, the understanding of this disease has evolved.This first in a two-part series on COVID-19 updates provides a focused overview of the presentation and evaluation of COVID-19 for emergency clinicians.COVID-19, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality worldwide. Several variants exist, including a variant of concern known as Delta (B.1.617.2 lineage) and the Omicron variant (B.1.1.529 lineage). The Delta variant is associated with higher infectivity and poor patient outcomes, and the Omicron variant has resulted in a significant increase in infections. While over 80% of patients experience mild symptoms, a significant proportion can be critically ill, including those who are older and those with comorbidities. Upper respiratory symptoms, fever, and changes in taste/smell remain the most common presenting symptoms. Extrapulmonary complications are numerous and may be severe, including the cardiovascular, neurologic, gastrointestinal, and dermatologic systems. Emergency department evaluation includes focused testing for COVID-19 and assessment of end-organ injury. Imaging may include chest radiography, computed tomography, or ultrasound. Several risk scores may assist in prognostication, including the 4C (Coronavirus Clinical Characterisation Consortium) score, quick COVID Severity Index (qCSI), NEWS2, and the PRIEST score, but these should only supplement and not replace clinical judgment.This review provides a focused update of the presentation and evaluation of COVID-19 for emergency clinicians.

101 citations

Journal ArticleDOI
20 Jan 2022

90 citations

Journal ArticleDOI
TL;DR: In this paper, an independent head-to-head evaluation of the sensitivity of SARS-CoV-2 antigen rapid diagnostic tests (Ag RDT) offered in Germany was performed.
Abstract: IntroductionNumerous CE-marked SARS-CoV-2 antigen rapid diagnostic tests (Ag RDT) are offered in Europe, several of them with unconfirmed quality claims.AimWe performed an independent head-to-head evaluation of the sensitivity of SARS-CoV-2 Ag RDT offered in Germany.MethodsWe addressed the sensitivity of 122 Ag RDT in direct comparison using a common evaluation panel comprised of 50 specimens. Minimum sensitivity of 75% for panel specimens with a PCR quantification cycle (Cq) ≤ 25 was used to identify Ag RDT eligible for reimbursement in the German healthcare system.ResultsThe sensitivity of different SARS-CoV-2 Ag RDT varied over a wide range. The sensitivity limit of 75% for panel members with Cq ≤ 25 was met by 96 of the 122 tests evaluated; 26 tests exhibited lower sensitivity, few of which failed completely. Some RDT exhibited high sensitivity, e.g. 97.5 % for Cq < 30.ConclusionsThis comparative evaluation succeeded in distinguishing less sensitive from better performing Ag RDT. Most of the evaluated Ag RDT appeared to be suitable for fast identification of acute infections associated with high viral loads. Market access of SARS-CoV-2 Ag RDT should be based on minimal requirements for sensitivity and specificity.

83 citations

Journal ArticleDOI
TL;DR: In this article , the second update of this review was published, which was first published in 2020, and included 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2 infection or known absence of infection).
Abstract: Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020.To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design.We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample.We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed.Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.

54 citations