scispace - formally typeset
Search or ask a question
Author

Stephan Rasp

Bio: Stephan Rasp is an academic researcher from Technische Universität München. The author has contributed to research in topics: Artificial neural network & Weather forecasting. The author has an hindex of 16, co-authored 30 publications receiving 1226 citations. Previous affiliations of Stephan Rasp include Ludwig Maximilian University of Munich.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a deep neural network is used to represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in which convection is treated explicitly.
Abstract: The representation of nonlinear subgrid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for short-term simulations of at most a few years because of computational limitations. Here we demonstrate that deep learning can be used to capture many advantages of cloud-resolving modeling at a fraction of the computational cost. We train a deep neural network to represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in which convection is treated explicitly. The trained neural network then replaces the traditional subgrid parameterizations in a global general circulation model in which it freely interacts with the resolved dynamics and the surface-flux scheme. The prognostic multiyear simulations are stable and closely reproduce not only the mean climate of the cloud-resolving simulation but also key aspects of variability, including precipitation extremes and the equatorial wave spectrum. Furthermore, the neural network approximately conserves energy despite not being explicitly instructed to. Finally, we show that the neural network parameterization generalizes to new surface forcing patterns but struggles to cope with temperatures far outside its training manifold. Our results show the feasibility of using deep learning for climate model parameterization. In a broader context, we anticipate that data-driven Earth system model development could play a key role in reducing climate prediction uncertainty in the coming decade.

542 citations

Journal ArticleDOI
TL;DR: A novel approach to convective parameterization based on machine learning is presented, using an aquaplanet with prescribed sea surface temperatures as a proof of concept to show that neural networks trained on a high-resolution model in which moist convection is resolved can be an appealing technique to tackle and better represent moist convections in coarse resolution climate models.
Abstract: Modeling and representing moist convection in coarse-scale climate models remains one of the main bottlenecks of current climate simulations. Many of the biases present with parameterized convection are strongly reduced when convection is explicitly resolved (in cloud resolving models at high spatial resolution ~ a kilometer or so). We here present a novel approach to convective parameterization based on machine learning over an aquaplanet with prescribed sea surface temperatures. The machine learning is trained over a superparameterized version of a climate model in which convection is resolved by an embedded 2D cloud resolving models. The machine learning representation of convection, called Cloud Brain (CBRAIN) replicates many of the convective features of the superparameterized climate model, yet reduces its inherent stochasticity. The approach presented here opens up a new possibility and a first step towards better representing convection in climate models and reducing uncertainties in climate predictions.

301 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts for ensemble weather predictions. But, this is done with distri...
Abstract: Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distri...

220 citations

Journal ArticleDOI
TL;DR: This work introduces a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints in the architecture or the loss function, which reduces errors in the subsets of the outputs most impacted by the constraints.
Abstract: Neural networks can emulate nonlinear physical systems with high accuracy, yet they may produce physically inconsistent results when violating fundamental constraints. Here, we introduce a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints in the architecture or the loss function. Applied to convective processes for climate modeling, architectural constraints enforce conservation laws to within machine precision without degrading performance. Enforcing constraints also reduces errors in the subsets of the outputs most impacted by the constraints.

187 citations

23 May 2018
TL;DR: A flexible alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor variables and forecast distribution parameters that are automatically learned in a data-driven way rather than requiring prespecified link functions is proposed.
Abstract: Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in which the parameters of a predictive distribution are estimated from a training period. We propose a flexible alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor variables and forecast distribution parameters that are automatically learned in a data-driven way rather than requiring prespecified link functions. In a case study of 2-m temperature forecasts at surface stations in Germany, the neural network approach significantly outperforms benchmark postprocessing methods while being computationally more affordable. Key components to this improvement are the use of auxiliary predictor variables and station-specific information with the help of embeddings. Furthermore, the trained neural network can be used to gain insight into the importance of meteorological variables, thereby challenging the notion of neural networks as uninterpretable black boxes. Our approach can easily be extended to other statistical postprocessing and forecasting problems. We anticipate that recent advances in deep learning combined with the ever-increasing amounts of model and observation data will transform the postprocessing of numerical weather forecasts in the coming decade.

179 citations


Cited by
More filters
Journal ArticleDOI
13 Feb 2019-Nature
TL;DR: It is argued that contextual cues should be used as part of deep learning to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales.
Abstract: Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning.

2,014 citations

01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations

Journal ArticleDOI
TL;DR: In this paper, a deep neural network is used to represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in which convection is treated explicitly.
Abstract: The representation of nonlinear subgrid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for short-term simulations of at most a few years because of computational limitations. Here we demonstrate that deep learning can be used to capture many advantages of cloud-resolving modeling at a fraction of the computational cost. We train a deep neural network to represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in which convection is treated explicitly. The trained neural network then replaces the traditional subgrid parameterizations in a global general circulation model in which it freely interacts with the resolved dynamics and the surface-flux scheme. The prognostic multiyear simulations are stable and closely reproduce not only the mean climate of the cloud-resolving simulation but also key aspects of variability, including precipitation extremes and the equatorial wave spectrum. Furthermore, the neural network approximately conserves energy despite not being explicitly instructed to. Finally, we show that the neural network parameterization generalizes to new surface forcing patterns but struggles to cope with temperatures far outside its training manifold. Our results show the feasibility of using deep learning for climate model parameterization. In a broader context, we anticipate that data-driven Earth system model development could play a key role in reducing climate prediction uncertainty in the coming decade.

542 citations

Journal ArticleDOI
TL;DR: It is argued that DL can help address several major new and old challenges facing research in water sciences such as interdisciplinarity, data discoverability, hydrologic scaling, equifinality, and needs for parameter regionalization.

501 citations

Posted Content
TL;DR: From smart grids to disaster management, high impact problems where existing gaps can be filled by ML are identified, in collaboration with other fields, to join the global effort against climate change.
Abstract: Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

441 citations