scispace - formally typeset
Search or ask a question
Author

Stephan T. Grilli

Bio: Stephan T. Grilli is an academic researcher from University of Rhode Island. The author has contributed to research in topics: Potential flow & Breaking wave. The author has an hindex of 43, co-authored 211 publications receiving 8175 citations. Previous affiliations of Stephan T. Grilli include California State University, Long Beach & University of Liège.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a high-order numerical model based on the Boussinesq model was developed and applied to the study of two canonical problems: solitary wave shoaling on slopes and undular bore propagation over a horizontal bed.
Abstract: Fully nonlinear extensions of Boussinesq equations are derived to simulate surface wave propagation in coastal regions. By using the velocity at a certain depth as a dependent variable (Nwogu 1993), the resulting equations have significantly improved linear dispersion properties in intermediate water depths when compared to standard Boussinesq approximations. Since no assumption of small nonlinearity is made, the equations can be applied to simulate strong wave interactions prior to wave breaking. A high-order numerical model based on the equations is developed and applied to the study of two canonical problems: solitary wave shoaling on slopes and undular bore propagation over a horizontal bed. Results of the Boussinesq model with and without strong nonlinearity are compared in detail to those of a boundary element solution of the fully nonlinear potential flow problem developed by Grilli et al. (1989). The fully nonlinear variant of the Boussinesq model is found to predict wave heights, phase speeds and particle kinematics more accurately than the standard approximation.

902 citations

Journal ArticleDOI
TL;DR: A high-order adaptive time-stepping TVD solver for the fully nonlinear Boussinesq model of Chen (2006), extended to include moving reference level as in Kennedy et al. (2001).

486 citations

Journal ArticleDOI
TL;DR: The GEOWAVE model as mentioned in this paper uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations.
Abstract: . Case studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the best available marine geology data and interpretations into successful case studies that reproduce all available tsunami observations and records. We show that nonlinear and dispersive tsunami propagation models may be necessary for many landslide tsunami case studies. GEOWAVE is a comprehensive tsunami simulation model formed in part by combining the Tsunami Open and Progressive Initial Conditions System (TOPICS) with the fully non-linear Boussinesq water wave model FUNWAVE. TOPICS uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations. In this work, we validate GEOWAVE with successful case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. GEOWAVE simulates accurate runup and inundation at the same time, with no additional user interference or effort, using a slot technique. Wave breaking, if it occurs during shoaling or runup, is also accounted for with a dissipative breaking model acting on the wave front. The success of our case studies depends on the combination of accurate tsunami sources and an advanced tsunami propagation and inundation model.

300 citations

Journal ArticleDOI
TL;DR: In this article, an accurate three-dimensional numerical model, applicable to strongly non-linear waves, is proposed, where boundary geometry and field variables are represented by 16-node cubic ‘sliding’ quadrilateral elements, providing local inter-element continuity of the first and second derivatives.
Abstract: An accurate three-dimensional numerical model, applicable to strongly non-linear waves, is proposed. The model solves fully non-linear potential flow equations with a free surface using a higher-order three-dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second-order explicit Taylor series expansions with adaptive time steps. The model is applicable to non-linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16-node cubic ‘sliding’ quadrilateral elements, providing local inter-element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well-posed in all cases of mixed boundary conditions. Higher-order tangential derivatives, required for the time updating, are calculated in a local curvilinear co-ordinate system, using 25-node ‘sliding’ fourth-order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio-temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two-dimensional solution proposed earlier. Finally, three-dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd.

296 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional (2D) fully nonlinear potential flow (FNPF) model for tsunami generation by two idealized types of submarine mass failure (SMF): underwater slides and slumps is presented.
Abstract: Numerical simulations are performed with a two-dimensional (2D) fully nonlinear potential flow (FNPF) model for tsunami generation by two idealized types of submarine mass failure (SMF): underwater slides and slumps. These simulations feature rigid or deforming SMFs with a Gaussian cross section, translating down a plane slope. In each case, the SMF center of mass motion is expressed as a function of geometric, hydrodynamic, and material parameters, following a simple wavemaker formalism, and prescribed as a boundary condition in the FNPF model. Tsunami amplitudes and runup are obtained from computed free surface elevations. Model results are experimentally validated for a rigid 2D slide. Sensitivity studies are performed to estimate the effects of SMF-shape, type, and initial submergence depth—on the generated tsunamis. A strong SMF deformation during motion is shown to significantly enhance tsunami generation, particularly in the far-field. Typical slumps are shown to generate smaller tsunamis than corresponding slides. Both tsunami amplitude and runup are shown to depend strongly on initial SMF submergence depth. For the selected SMF idealized geometry, this dependence is simply expressed by power laws. Other sensitivity analyses are presented in a companion paper, and results from numerical simulations are converted into empirical curve fits predicting characteristic tsunami amplitudes as functions of nondimensional governing parameters. It should be stressed that these empirical formulas are only valid in the vicinity of the tsunami sources and, because of the complexity of the problem, many simplifications were necessary. It is further shown in the companion paper how 2D results can be modified to account for three-dimensional tsunami generation and used for quickly estimating tsunami hazard or for performing simple case studies.

252 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1993
TL;DR: In this paper, the authors focus on the fundamentals of poroelasticity, and discuss the formulation and analysis of coupled deformation-diffusion processes, within the framework of the Biot theory of pore elasticity.
Abstract: Publisher Summary This chapter focuses on fundamentals of poroelasticity. The presence of a freely moving fluid in a porous rock modifies its mechanical response. Two mechanisms play a key role in the interaction between the interstitial fluid and the porous rock: (i) an increase of pore pressure induces a dilation of the rock; and (ii) compression of the rock causes a rise of pore pressure, if the fluid is prevented from escaping the pore network. These coupled mechanisms bestow an apparent time-dependent character to the mechanical properties of the rock. If excess pore pressure, induced by compression of the rock, is allowed to dissipate through diffusive fluid mass transport, further deformation of the rock progressively takes place. The rock is more compliant under drained conditions than undrained ones. The chapter discusses the formulation and analysis of coupled deformation–diffusion processes, within the framework of the Biot theory of poroelasticity. The Biot model of a fluid-filled porous material is constructed on the conceptual model of a coherent solid skeleton and a freely moving pore fluid.

1,056 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics and discuss the value that is obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations.

976 citations

Journal ArticleDOI
TL;DR: In this paper, a high-order numerical model based on the Boussinesq model was developed and applied to the study of two canonical problems: solitary wave shoaling on slopes and undular bore propagation over a horizontal bed.
Abstract: Fully nonlinear extensions of Boussinesq equations are derived to simulate surface wave propagation in coastal regions. By using the velocity at a certain depth as a dependent variable (Nwogu 1993), the resulting equations have significantly improved linear dispersion properties in intermediate water depths when compared to standard Boussinesq approximations. Since no assumption of small nonlinearity is made, the equations can be applied to simulate strong wave interactions prior to wave breaking. A high-order numerical model based on the equations is developed and applied to the study of two canonical problems: solitary wave shoaling on slopes and undular bore propagation over a horizontal bed. Results of the Boussinesq model with and without strong nonlinearity are compared in detail to those of a boundary element solution of the fully nonlinear potential flow problem developed by Grilli et al. (1989). The fully nonlinear variant of the Boussinesq model is found to predict wave heights, phase speeds and particle kinematics more accurately than the standard approximation.

902 citations

Book
01 Feb 2010
TL;DR: The SWAN wave model as discussed by the authors is a wave model based on linear wave theory (SWAN) for oceanic and coastal waters, and it has been shown to be effective in detecting ocean waves.
Abstract: 1. Introduction 2. Observation techniques 3. Description of ocean waves 4. Statistics 5. Linear wave theory (oceanic waters) 6. Waves in oceanic waters 7. Linear wave theory (coastal waters) 8. Waves in coastal waters 9. The SWAN wave model Appendices References Index.

874 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of rogue waves, which is the name given by oceanographers to isolated large amplitude waves, that occur more frequently than expected for normal, Gaussian distributed, statistical events.

851 citations