scispace - formally typeset
Search or ask a question
Author

Stephan te Heesen

Other affiliations: University of Zurich
Bio: Stephan te Heesen is an academic researcher from ETH Zurich. The author has contributed to research in topics: Saccharomyces cerevisiae & Mutant. The author has an hindex of 7, co-authored 7 publications receiving 1039 citations. Previous affiliations of Stephan te Heesen include University of Zurich.

Papers
More filters
Journal ArticleDOI
TL;DR: A detection system based on split-ubiquitin that might be useful as a genetic and biochemical tool for the analysis of interactions between membrane proteins in vivo is described.
Abstract: A detection system for interactions between membrane proteins in vivo is described. The system is based on split-ubiquitin [Johnsson, N. & Varshavsky, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10340–10344]. Interaction between two membrane proteins is detected by proteolytic cleavage of a protein fusion. The cleavage releases a transcription factor, which activates reporter genes in the nucleus. As a result, interaction between membrane proteins can be analyzed by the means of a colorimetric assay. We use membrane proteins of the endoplasmic reticulum as a model system. Wbp1p and Ost1p are both subunits of the oligosaccharyl transferase membrane protein complex. The Alg5 protein also localizes to the membrane of the endoplasmic reticulum, but does not interact with the oligosaccharyltransferase. Specific interactions are detected between Wbp1p and Ost1p, but not between Wbp1p and Alg5p. The new system might be useful as a genetic and biochemical tool for the analysis of interactions between membrane proteins in vivo.

620 citations

Journal ArticleDOI
TL;DR: The cloning of the ALG3 locus is described by complementation of the temperature sensitive growth defect of the alg3 stt3 double mutant and the isolated ALG 3 gene complements both the defect in the biosynthesis of lipid-linked oligosaccharides of theAlg3-mutant and the under-glycosylation of secretory proteins.
Abstract: The Saccharomyces cerevisiae alg3-1 mutant is described as defective in the biosynthesis of dolichol-linked oligosaccharides (Huffaker and Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466-7470, 1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and Endo H resistant carbohydrates are transferred to protein by the oligosaccharyltransferase complex. In this study, we describe the cloning of the ALG3 locus by complementation of the temperature sensitive growth defect of the alg3 stt3 double mutant. The isolated ALG3 gene complements both the defect in the biosynthesis of lipid-linked oligosaccharides of the alg3-mutant and the under-glycosylation of secretory proteins. The inactivation of the nonessential ALG3 gene results in the accumulation of lipid-linked Man5GlcNac2 and protein-bound carbohydrates which are completely Endo H resistant. The ALG3 locus encodes a potential ER-transmembrane protein of 458 amino acids (53 kDa) with a C-terminal KKXX-retrieval sequence.

145 citations

Journal ArticleDOI
TL;DR: Topological studies indicate that the ALG5 protein has sequence similarity to the GDP-mannose:dolichyl-phosphate mannosyltransferase (Dpm1p) from S. cerevisiae, a transmembrane protein that spans the membrane several times.
Abstract: UDP-glucose:dolichyl-phosphate glucosyltransferase is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. The structural gene encoding this transferase from Saccharomyces cerevisiae was isolated by complementation of an alg5-1 mutation. DNA sequencing of ALG5 revealed an open-reading frame of 1002 bases encoding a transmembrane protein of molecular mass 38.3 kDa. Overexpression of Alg5p in both yeast and Escherichia coli results in an increase of UDP-glucose:dolichyl-phosphate glucosyltransferase activity, whereas a deletion of the yeast gene leads to a loss of this activity and a concomitant underglycosylation of carboxypeptidase Y. The ALG5 protein has sequence similarity to the GDP-mannose:dolichyl-phosphate mannosyltransferase (Dpm1p) from S. cerevisiae. Topological studies indicate that UDP-glucose:dolichyl-phosphate glucosyltransferase is a transmembrane protein that spans the membrane several times.

100 citations

Journal ArticleDOI
TL;DR: In vivo evidence is provided that the G1 oligosaccharide is an active oligosACcharide structure in the ER glycoprotein processing pathway of S.cerevisiae and it is directly shown that no general glycop protein glucosyltransferase exists in S. cerevisiae.
Abstract: In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.

81 citations

Journal ArticleDOI
TL;DR: A novel locus, OST5, was identified, an intron‐containing gene encoding a putative membrane protein present in highly purified OTase preparations, which indicates that this small membrane protein directly interacts with other OTase components, most likely with Ost1p.
Abstract: The central reaction in the process of N-linked protein glycosylation in eukaryotic cells, the transfer of the oligosaccharide Glc(3)Man(9)GlcNAc(2) from the lipid dolicholpyrophosphate to selected asparagine residues, is catalyzed by the oligosaccharyltransferase (OTase). This enzyme consists of multiple subunits; however, purification of the complex has revealed different results with respect to its protein composition. To determine how many different loci are required for OTase activity in vivo, we performed a novel, specific screen for mutants with altered OTase activity. Based on the synthetic lethal phenotype of OTase mutants in combination with a deficiency of dolicholphosphoglucose biosynthesis which results in non-glucosylated lipid-linked oligosaccharide, we identified seven complementation groups with decreased OTase activity. Beside the known OTase loci, STT3, OST1, WBP1, OST3, SWP1 and OST2, a novel locus, OST5, was identified. OST5 is an intron-containing gene encoding a putative membrane protein of 9.5 kDa present in highly purified OTase preparations. OST5 protein is not essential for growth but its depletion results in a reduced OTase activity. Suppression of an ost1 mutation by overexpression of OST5 indicates that this small membrane protein directly interacts with other OTase components, most likely with Ost1p. A strong genetic interaction with a stt3 mutation implies a role in complex assembly.

67 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
Ari Helenius1, Markus Aebi
TL;DR: From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells.
Abstract: From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells. The sugars are added to nascent proteins as a core oligosaccharide unit, which is then extensively modified by removal and addition of sugar residues in the endoplasmic reticulum (ER) and the Golgi complex. It has become evident that the modifications that take place in the ER reflect a spectrum of functions related to glycoprotein folding, quality control, sorting, degradation, and secretion. The glycans not only promote folding directly by stabilizing polypeptide structures but also indirectly by serving as recognition "tags" that allow glycoproteins to interact with a variety of lectins, glycosidases, and glycosyltranferases. Some of these (such as glucosidases I and II, calnexin, and calreticulin) have a central role in folding and retention, while others (such as alpha-mannosidases and EDEM) target unsalvageable glycoproteins for ER-associated degradation. Each residue in the core oligosaccharide and each step in the modification program have significance for the fate of newly synthesized glycoproteins.

1,945 citations

Journal ArticleDOI
TL;DR: As the authors gain a greater understanding of the mechanisms that control UPR activation, it should be possible to discover methods to activate or inhibit the UPR as desired for therapeutic benefit.
Abstract: A variety of approaches have been employed to identify the UPR signaling components, their function, and their physiological role. Yeast genetics allowed the definition of the basic ER stress–signaling pathway. The identification of homologous and parallel signaling pathways in higher eukaryotes has produced a mechanistic framework the cell uses to sense and compensate for ER over-load and stress. The high-level tissue-specific expression patterns of several ER stress–signaling molecules indicated the pancreas and intestine as organs that require UPR for physiological function. Analysis of UPR-induced gene expression established that protein degradation is required to reduce the stress of unfolded protein accumulation in the ER. Major advances in identifying UPR function and relevance to disease were derived from mutation of UPR signaling components in model organisms and the identification of mutations in humans. Despite tremendous progress, our knowledge of the UPR pathway remains incomplete. Further studies promise to expand our understanding of how ER stress impacts the other cellular signaling pathways. It will be very exciting and informative to understand how the UPR varies when critical components are genetically manipulated by deletion or other types of mutations. In addition, although the accumulation of unfolded protein in the ER is now known to contribute to pathogenesis in a variety of diseases, there are still few therapeutic approaches that target these events. With a greater understanding of protein-folding processes, pharmacological intervention with chemical chaperones to promote proper folding becomes feasible, as observed with sodium phenylbutyrate for Δ508 CFTR (see Gelman and Kopito, this Perspective series, ref. 53). Future intervention should consider activation of different subpathways of the UPR or overexpression of appropriate protein chaperones, as in the case of overexpression of the J domain of cytosolic HSP70, which suppresses polyglutamine toxicity in flies (88). Treatments that activate the ERAD response may also ameliorate pathogenesis in a number of the conformational diseases. Over the past ten years, tremendous progress has been made in understanding the mechanisms and physiological significance of the UPR. The processes of protein folding and secretion, transcriptional and translational activation, and protein degradation are intimately interconnected to maintain homeostasis in the ER. A variety of environmental insults, genetic disease, and underlying genetic modifiers of UPR function contribute to the pathogenesis of different disease states. As we gain a greater understanding of the mechanisms that control UPR activation, it should be possible to discover methods to activate or inhibit the UPR as desired for therapeutic benefit.

1,257 citations

Journal ArticleDOI
18 Sep 2009-Cell
TL;DR: CHL1 uses dual-affinity binding and a phosphorylation switch to sense a wide range of nitrate concentrations in the soil, thereby functioning as an ion sensor in higher plants.

1,032 citations

Journal ArticleDOI
TL;DR: A comprehensive system to examine two-hybrid interactions in all of the possible combinations between proteins of Saccharomyces cerevisiae will provide many leads for integration of various cellular functions and serve as a major driving force in the completion of the protein-protein interaction map.
Abstract: tions, constituting '10% of the total to be tested, has revealed 183 independent two-hybrid interactions, more than half of which are entirely novel. Notably, the obtained binary data allow us to extract more complex interaction networks, including the one that may explain a currently unsolved mechanism for the connection between distinct steps of vesicular transport. The approach de- scribed here thus will provide many leads for integration of various cellular functions and serve as a major driving force in the com- pletion of the protein-protein interaction map.

837 citations