scispace - formally typeset
Search or ask a question
Author

Stéphane Morel

Bio: Stéphane Morel is an academic researcher from Direction générale de l'armement. The author has contributed to research in topics: Spectroscopy & Laser-induced breakdown spectroscopy. The author has an hindex of 1, co-authored 1 publications receiving 175 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Time-resolved laser-induced breakdown spectroscopy (TRELIBS) exhibits a good ability to differentiate among all these species, whatever the culture medium, the species or the strain, and is expected to be a good candidate for a sensor of hazards either on surfaces or in ambient air.
Abstract: A laser-induced breakdown spectroscopy technique for analyzing biological matter for the detection of biological hazards is investigated. Eight species were considered in our experiment: six bacteria and two pollens in pellet form. The experimental setup is described, then a cumulative intensity ratio is proposed as a quantitative criterion because of its linearity and reproducibility. Time-resolved laser-induced breakdown spectroscopy (TRELIBS) exhibits a good ability to differentiate among all these species, whatever the culture medium, the species or the strain. Thus we expect that TRELIBS will be a good candidate for a sensor of hazards either on surfaces or in ambient air.

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current state-of-the-art of analytical LIBS is summarized, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools are discussed.
Abstract: The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis.

1,159 citations

Journal ArticleDOI
22 Feb 2012-Tellus B
TL;DR: A review of the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus is presented in this article.
Abstract: Atmospheric aerosol particles of biological origin are a very diverse group of biological materials and structures, including microorganisms, dispersal units, fragments and excretions of biological organisms. In recent years, the impact of biological aerosol particles on atmospheric processes has been studied with increasing intensity, and a wealth of new information and insights has been gained. This review outlines the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus. We give an overview of sampling methods and physical, chemical and biological techniques for PBAP analysis (cultivation, microscopy, DNA/RNA analysis, chemical tracers, optical and mass spectrometry, etc.). Moreover, we address and summarise the current understanding and open questions concerning the influence of PBAP on the atmosphere and climate, i.e. their optical properties and their ability to act as ice nuclei (IN) or cloud condensation nuclei (CCN). We suggest that the following research activities should be pursued in future studies of atmospheric biological aerosol particles: (1) develop efficient and reliable analytical techniques for the identification and quantification of PBAP; (2) apply advanced and standardised techniques to determine the abundance and diversity of PBAP and their seasonal variation at regional and global scales (atmospheric biogeography); (3) determine the emission rates, optical properties, IN and CCN activity of PBAP in field measurements and laboratory experiments; (4) use field and laboratory data to constrain numerical models of atmospheric transport, transformation and climate effects of PBAP. Keywords: primary biological atmospheric aerosol; climate; cloud condensation nuclei; biology; atmospheric ice nuclei (Published: 22 February 2012) Citation: Tellus B 2012, 64 , 15598, DOI: 10.3402/tellusb.v64i0.15598

1,034 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a single-pulse laser source over a doublepulse system as the most suitable source for the stand-off analysis of organic samples for the detection and characterization of energetic materials at distances up to 45 m using standoff laser induced breakdown spectroscopy (LIBS).
Abstract: The detection and characterization of energetic materials at distances up to 45 m using stand-off laser induced breakdown spectroscopy (LIBS) has been demonstrated. A field-portable open-path LIB spectrometer working under a coaxial configuration was used. A preliminary study allowed choosing a single-pulse laser source over a double-pulse system as the most suitable source for the stand-off analysis of organic samples. The C2 Swan system, as well as the hydrogen, oxygen and nitrogen emission intensity ratios were the necessary parameters to identify the analyte as an organic explosive, organic non-explosive and non-organic samples. O/N intensity ratios of 2.9 and 2.16 with relative standard deviations of 4.03% and 8.36% were obtained for 2,4-dinitrotoluene and aluminium samples, respectively. A field test with known samples and a blind test were carried out at a distance of 30 m from the sample. Identification of energetic compounds in such conditions resulted in 19 correct results out of 21 samples.

240 citations

Journal ArticleDOI
TL;DR: LIBS data from the individual laser shots were analyzed by principal-components analysis and were found to contain adequate information to afford discrimination among the different biomaterials.
Abstract: Laser-induced breakdown spectroscopy (LIBS) has been used to study bacterial spores, molds, pollens, and proteins. Biosamples were prepared and deposited onto porous silver substrates. LIBS data from the individual laser shots were analyzed by principal-components analysis and were found to contain adequate information to afford discrimination among the different biomaterials. Additional discrimination within the three bacilli studied appears feasible.

217 citations

Journal ArticleDOI
TL;DR: A series of laboratory experiments have been performed highlighting the potential of laser-induced breakdown spectroscopy (LIBS) as a versatile sensor for the detection of terrorist threats as discussed by the authors.
Abstract: A series of laboratory experiments have been performed highlighting the potential of laser-induced breakdown spectroscopy (LIBS) as a versatile sensor for the detection of terrorist threats. LIBS has multiple attributes that provide the promise of unprecedented performance for hazardous material detection and identification. These include: 1) real-time analysis, 2) high sensitivity, 3) no sample preparation, and 4) the ability to detect all elements and virtually all hazards, both molecular and biological. We have used LIBS to interrogate a variety of different target samples, including explosives, chemical warfare simulants, biological agent simulants, and landmine casings. We have used the acquired spectra to demonstrate discrimination between different chemical warfare simulants, including those on soil backgrounds. A linear correlation technique permits discrimination between an anthrax surrogate and several other biomaterials such as molds and pollens. We also use broadband LIBS to identify landmine casings versus other plastics and environmental clutter materials. A new man-portable LIBS system developed as a collaborative effort between the U.S. Army Research Laboratory and Ocean Optics, Inc., is described and several other schemes for implementing LIBS sensors for homeland security and force protection are discussed.

185 citations