scispace - formally typeset
Search or ask a question
Author

Stephanie A. Nitopi

Bio: Stephanie A. Nitopi is an academic researcher from Stanford University. The author has contributed to research in topics: Electrocatalyst & Reversible hydrogen electrode. The author has an hindex of 7, co-authored 8 publications receiving 1525 citations. Previous affiliations of Stephanie A. Nitopi include SLAC National Accelerator Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
01 Oct 2018
TL;DR: In this paper, the discovery of an electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) that is highly active for CO2 reduction to alcohols was reported.
Abstract: The discovery of materials for the electrochemical transformation of carbon dioxide into liquid fuels has the potential to impact large-scale storage of renewable energies and reduce carbon emissions. Here, we report the discovery of an electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) that is highly active for CO2 reduction to alcohols. At low overpotentials, the Au/Cu electrocatalyst is over 100 times more selective for the formation of products containing C–C bonds versus methane or methanol, largely favouring the generation of alcohols over hydrocarbons. A combination of electrochemical testing and transport modelling supports the hypothesis that CO2 reduction on gold generates a high CO concentration on nearby copper, where CO is further reduced to alcohols such as ethanol and n-propanol under locally alkaline conditions. The bimetallic Au/Cu electrocatalyst exhibits synergistic activity and selectivity superior to gold, copper or AuCu alloys, and opens new possibilities for the development of CO2 reduction electrodes exploiting tandem catalysis mechanisms. The electrochemical transformation of CO2 into liquid fuels is a major challenge. Now, Jaramillo, Hahn and co-workers present a Au/Cu catalyst highly active to C2+ alcohols at low overpotentials as a result of a tandem mechanism where CO2 is reduced to CO on Au and further reduced to C2+ alcohols on nearby Cu.

416 citations

Journal ArticleDOI
TL;DR: It is demonstrated that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction.
Abstract: In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the , , and orientations using X-ray pole figures To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C-C coupling than Cu(111), Cu(751) is the most selective for >2e- oxygenate formation at low overpotentials Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction

282 citations

Journal ArticleDOI
TL;DR: In this article, a planar polycrystalline copper as an electrocatalyst for CO reduction under alkaline conditions was used to investigate the surface reactivity of CO, which is a key intermediate during electrochemical CO2 reduction.
Abstract: Understanding the surface reactivity of CO, which is a key intermediate during electrochemical CO2 reduction, is crucial for the development of catalysts that selectively target desired products for the conversion of CO2 to fuels and chemicals In this study, a custom-designed electrochemical cell is utilized to investigate planar polycrystalline copper as an electrocatalyst for CO reduction under alkaline conditions Seven major CO reduction products have been observed including various hydrocarbons and oxygenates which are also common CO2 reduction products, strongly indicating that CO is a key reaction intermediate for these further-reduced products A comparison of CO and CO2 reduction demonstrates that there is a large decrease in the overpotential for C–C coupled products under CO reduction conditions The effects of CO partial pressure and electrolyte pH are investigated; we conclude that the aforementioned large potential shift is primarily a pH effect Thus, alkaline conditions can be used to inc

233 citations

Journal ArticleDOI
01 Aug 2019
TL;DR: In this article, the roughness factor of an electrode has been used to increase total rates of production, although rarely as a means to improve selectivity, which is an effective design principle to direct the selectivity of CO reduction towards multicarbon oxygenates at low overpotentials and concurrently suppressing hydrocarbon and hydrogen production.
Abstract: Using renewable electricity to convert CO/CO2 into liquid products is touted as a sustainable process to produce fuels and chemicals, yet requires further advances in electrocatalyst understanding, development and device integration. The roughness factor of an electrode has generally been used to increase total rates of production, although rarely as a means to improve selectivity. Here we demonstrate that increasing the roughness factor of Cu electrodes is an effective design principle to direct the selectivity of CO reduction towards multicarbon oxygenates at low overpotentials and concurrently suppressing hydrocarbon and hydrogen production. The nanostructured Cu electrodes are capable of achieving almost full selectivity towards multicarbon oxygenates at an electrode potential of only –0.23 V versus the reversible hydrogen electrode. The successful implementation of this catalytic system has enabled an excellent CO reduction performance and elucidated viable pathways to improve the energy efficiency towards liquid fuels in high-power conversion electrolysers. The roughness factor of an electrode has been generally used to increase total rates of production, though rarely as a means to improve selectivity. Now, Jaramillo, Hahn and co-workers direct the selectivity of CO reduction to multicarbon oxygenates at low overpotentials by increasing the roughness factor of nanostructured Cu electrodes.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
26 Apr 2019-Science
TL;DR: A comparative analysis of electrocatalyst and carbon emissions assessment of CO2 products such as ethylene, ethanol, and carbon monoxide shows that electrocatalytic production has the potential to yield the greatest reduction in carbon emissions, provided that a steady supply of clean electricity is available.
Abstract: Electrocatalytic transformation of carbon dioxide (CO2) and water into chemical feedstocks offers the potential to reduce carbon emissions by shifting the chemical industry away from fossil fuel dependence. We provide a technoeconomic and carbon emission analysis of possible products, offering targets that would need to be met for economically compelling industrial implementation to be achieved. We also provide a comparison of the projected costs and CO2 emissions across electrocatalytic, biocatalytic, and fossil fuel-derived production of chemical feedstocks. We find that for electrosynthesis to become competitive with fossil fuel-derived feedstocks, electrical-to-chemical conversion efficiencies need to reach at least 60%, and renewable electricity prices need to fall below 4 cents per kilowatt-hour. We discuss the possibility of combining electro- and biocatalytic processes, using sequential upgrading of CO2 as a representative case. We describe the technical challenges and economic barriers to marketable electrosynthesized chemicals.

1,234 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent advances and challenges in the understanding of electrochemical CO2 reduction and discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity.
Abstract: The electrocatalytic reduction of carbon dioxide is a promising approach for storing (excess) renewable electricity as chemical energy in fuels. Here, we review recent advances and challenges in the understanding of electrochemical CO2 reduction. We discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity. Carbon–carbon bond formation is also a key mechanistic step in CO2 electroreduction to high-density and high-value fuels. We show that both the initial CO2 activation and C–C bond formation are influenced by an intricate interplay between surface structure (both on the nano- and on the mesoscale), electrolyte effects (pH, buffer strength, ion effects) and mass transport conditions. This complex interplay is currently still far from being completely understood. In addition, we discuss recent progress in in situ spectroscopic techniques and computational techniques for mechanistic work. Finally, we identify some challenges in furthering our understanding of these themes. Electrocatalytic reduction of CO2 to fuels could be used as an approach to store renewable energy in the form of chemical energy. Here, Birdja et al. review current understanding of electrocatalytic systems and reaction pathways for these conversions.

1,141 citations

Journal ArticleDOI
04 Mar 2019
TL;DR: In this article, the authors discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design, focusing on findings extracted from in situ and operando characterizations.
Abstract: The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu–bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided. The electrochemical reduction of carbon dioxide to fuels and feedstocks has received increased attention over the past few years. In this Review, Roldan Cuenya and co-workers discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design.

719 citations