scispace - formally typeset
Search or ask a question
Author

Stephanie Forrest

Other affiliations: Santa Fe Institute, University of New Mexico, Facebook  ...read more
Bio: Stephanie Forrest is an academic researcher from Arizona State University. The author has contributed to research in topics: Evolutionary computation & The Internet. The author has an hindex of 72, co-authored 231 publications receiving 27659 citations. Previous affiliations of Stephanie Forrest include Santa Fe Institute & University of New Mexico.


Papers
More filters
Proceedings ArticleDOI
06 May 1996
TL;DR: A method for anomaly detection is introduced in which "normal" is defined by short-range correlations in a process' system calls, and initial experiments suggest that the definition is stable during normal behaviour for standard UNIX programs.
Abstract: A method for anomaly detection is introduced in which ``normal'' is defined by short-range correlations in a process' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common intrusions involving sendmail and lpr. This work is part of a research program aimed at building computer security systems that incorporate the mechanisms and algorithms used by natural immune systems.

2,003 citations

Proceedings ArticleDOI
16 May 1994
TL;DR: A method for change detection which is based on the generation of T cells in the immune system is described, which reveals computational costs of the system and preliminary experiments illustrate how the method might be applied to the problem of computer viruses.
Abstract: The problem of protecting computer systems can be viewed generally as the problem of learning to distinguish self from other. The authors describe a method for change detection which is based on the generation of T cells in the immune system. Mathematical analysis reveals computational costs of the system, and preliminary experiments illustrate how the method might be applied to the problem of computer viruses. >

1,782 citations

Journal ArticleDOI
TL;DR: Evidence is given that short sequences of system calls executed by running processes are a good discriminator between normal and abnormal operating characteristics of several common UNIX programs.
Abstract: A method is introduced for detecting intrusions at the level of privileged processes. Evidence is given that short sequences of system calls executed by running processes are a good discriminator between normal and abnormal operating characteristics of several common UNIX programs. Normal behavior is collected in two waysc Synthetically, by exercising as many normal modes of usage of a program as possible, and in a live user environment by tracing the actual execution of the program. In the former case several types of intrusive behavior were studieds in the latter case, results were analyzed for false positives.

1,435 citations

Proceedings ArticleDOI
01 Jan 1999
TL;DR: This work compares the ability of different data modeling methods to represent normal behavior accurately and to recognize intrusions and concludes that for this particular problem, weaker methods than HMMs are likely sufficient.
Abstract: Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. We study one such observable-sequences of system calls into the kernel of an operating system. Using system-call data sets generated by several different programs, we compare the ability of different data modeling methods to represent normal behavior accurately and to recognize intrusions. We compare the following methods: simple enumeration of observed sequences; comparison of relative frequencies of different sequences; a rule induction technique; and hidden Markov models (HMMs). We discuss the factors affecting the performance of each method and conclude that for this particular problem, weaker methods than HMMs are likely sufficient.

1,245 citations

Journal ArticleDOI
TL;DR: A body of work on computational immune systems that behave analogously to the natural immune system and in some cases have been used to solve practical engineering problems such as computer security are described.
Abstract: This review describes a body of work on computational immune systems that behave analogously to the natural immune system. These artificial immune systems (AIS) simulate the behavior of the natural immune system and in some cases have been used to solve practical engineering problems such as computer security. AIS have several strengths that can complement wet lab immunology. It is easier to conduct simulation experiments and to vary experimental conditions, for example, to rule out hypotheses; it is easier to isolate a single mechanism to test hypotheses about how it functions; agent-based models of the immune system can integrate data from several different experiments into a single in silico experimental system.

1,021 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Book
01 Jan 2002

17,039 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Book
John R. Koza1
01 Jan 1992
TL;DR: This book discusses the evolution of architecture, primitive functions, terminals, sufficiency, and closure, and the role of representation and the lens effect in genetic programming.
Abstract: Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository

13,487 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations