scispace - formally typeset
Search or ask a question
Author

Stéphanie Samartin

Other affiliations: University of Bern
Bio: Stéphanie Samartin is an academic researcher from Oeschger Centre for Climate Change Research. The author has contributed to research in topics: Holocene & Climate change. The author has an hindex of 9, co-authored 12 publications receiving 694 citations. Previous affiliations of Stéphanie Samartin include University of Bern.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a multi-proxy approach and a strategy combining lacustrine and marine records along a north-south transect were used to reconstruct high-resolution and well-dated palaeohydrological records and to assess their spatial and temporal coherency.
Abstract: . On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.

236 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling to explore the discrepancy between current and past distribution of the European tree species Abies alba (silver fir).
Abstract: Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (;6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961–1990) upper temperature limit of the species by ;5–78C (July means). Annual precipitation during this natural period was comparable to today (.700–800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000–115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5–78C, as long as precipitation does not fall below 700–800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.

170 citations

Journal ArticleDOI
TL;DR: A new chironomid-based paleotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene is presented.
Abstract: Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.

131 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region, in contrast with expectations based on climate models and long-term changes in summer insolation.
Abstract: Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000–5,000 years ago and estimated to have been 1–2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions. Reconstructions of Holocene summer temperatures differ between models and vegetation-based proxies. A quantitative reconstruction for the Mediterranean region based on fossil midge assemblages suggests warm summers, in line with climate models.

77 citations

Journal ArticleDOI
TL;DR: In this article, the authors combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate.
Abstract: Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.

72 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
TL;DR: This study revealed different responses of tree species to projected climate change, including "winners" and "losers", and the threat level was highest for species that currently have the northernmost distribution centers.
Abstract: Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios – optimistic (RCP2.6), moderate (RCP4.5) and pessimistic (RPC8.5) – using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: “winners” – mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur and Q. petraea; “losers” – mostly pioneer species: Betula pendula, Larix decidua, Picea abies and Pinus sylvestris and alien species – Pseudotsuga menziesii, Q. rubra and Robinia pseudoacacia, which may be also considered as “winners”. Assuming limited migration, most of the species studied would face significant decrease of suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. This article is protected by copyright. All rights reserved.

465 citations

Journal ArticleDOI
TL;DR: Insights from current understanding of drought impacts at stand-to-biogeographic scales are synthesized, including management options, and challenges to be addressed are identified, indicating that more complex models may provide limited guidance.
Abstract: We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.

395 citations

Journal ArticleDOI
TL;DR: A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out ofRefugia.
Abstract: Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.

340 citations

Journal ArticleDOI
TL;DR: Comparison of published species optima indicate that a number of models have little or no predictive power outside their current spatial setting and experiments using simulated training sets of known properties demonstrate how changes in secondary “nuisance” variables can lead to large, consistent, and interpretable trends in a reconstruction that are completely spurious.

307 citations