scispace - formally typeset
Search or ask a question
Author

Stephen A. Benton

Other affiliations: Polaroid Corporation
Bio: Stephen A. Benton is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Holography & Holographic display. The author has an hindex of 27, co-authored 83 publications receiving 3551 citations. Previous affiliations of Stephen A. Benton include Polaroid Corporation.


Papers
More filters
Journal ArticleDOI
01 Jan 2001-Science
TL;DR: The concept of fabrication complexity is introduced as a way of quantifying the difficulty of materially cloning physical systems with arbitrary internal states as primitives for physical analogs of cryptosystems.
Abstract: Modern cryptography relies on algorithmic one-way functions—numerical functions which are easy to compute but very difficult to invert. This dissertation introduces physical one-way functions and physical one-way hash functions as primitives for physical analogs of cryptosystems. Physical one-way functions are defined with respect to a physical probe and physical system in some unknown state. A function is called a physical one-way function if (a) there exists a deterministic physical interaction between the probe and the system which produces an output in constant time; (b) inverting the function using either computational or physical means is difficult; (c) simulating the physical interaction is computationally demanding and (d) the physical system is easy to make but difficult to clone. Physical one-way hash functions produce fixed-length output regardless of the size of the input. These hash functions can be obtained by sampling the output of physical one-way functions. For the system described below, it is shown that there is a strong correspondence between the properties of physical one-way hash functions and their algorithmic counterparts. In particular, it is demonstrated that they are collision-resistant and that they exhibit the avalanche effect, i.e., a small change in the physical system causes a large change in the hash value. An inexpensive prototype authentication system based on physical one-way hash functions is designed, implemented, and analyzed. The prototype uses a disordered three-dimensional microstructure as the underlying physical system and coherent radiation as the probe. It is shown that the output of the interaction between the physical system and the probe can be used to robustly derive a unique tamper-resistant identifier at a very low cost per bit. The explicit use of three-dimensional structures marks a departure from prior efforts. Two protocols, including a one-time pad protocol, that illustrate the utility of these hash functions are presented and potential attacks on the authentication system are considered. Finally, the concept of fabrication complexity is introduced as a way of quantifying the difficulty of materially cloning physical systems with arbitrary internal states. Fabrication complexity is discussed in the context of an idealized machine—a Universal Turing Machine augmented with a fabrication head—which transforms algorithmically minimal descriptions of physical systems into the systems themselves. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

1,665 citations

Proceedings ArticleDOI
01 May 1990
TL;DR: An electro-optical apparatus capable of displaying a computer generated hologram (CGH) in real time is presented and coherent light is modulated by the AOM and optically processed to produce a three-dimensional image with horizontal parallax.
Abstract: We present an electro-optical apparatus capable of displaying a computer generated hologram (CGH) in real time. The CGH is calculated by a supercomputer, read from a fast frame buffer, and transmitted to a high-bandwidth acousto-optic modulator (AOM). Coherent light is modulated by the AOM and optically processed to produce a three-dimensional image with horizontal parallax.© (1990) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

175 citations

Journal ArticleDOI
TL;DR: In this article, an electro-optic apparatus capable of displaying a computer-generated hologram in real time is described. But the display resolution can be increased by simultaneously writing three acoustic columns on a single crystal and optically multiplexing the resulting holograms.
Abstract: We describe an electro-optic apparatus capable of displaying a computer-generated hologram in real time. The computer-generated hologram is calculated by a supercomputer, read from a fast frame buffer, and transmitted to a wide-bandwidth acousto-optic modulator. Coherent light is modulated by the acousto-optic modulator and optically processed to produce a three-dimensional image with horizontal parallax. We evaluate different display geometries and their effect on the optical parameters of the system. We then show how the display resolution can be increased by simultaneously writing three acoustic columns on a single crystal and optically multiplexing the resulting holograms. We finally describe some improvements that follow from the analysis.

169 citations

01 May 1989

147 citations

Proceedings ArticleDOI
08 Apr 1983
TL;DR: Progress over the past fifteen years in the synthesis of quasi-holographic images from sequences of discrete perspective views, such as photographs and X-ray images are surveyed.
Abstract: Holography's effectiveness as a visual medium is often constrained by the variety of scenes that it can render. Here we survey progress over the past fifteen years in the synthesis of quasi-holographic images from sequences of discrete perspective views, such as photographs and X-ray images. Paralleling the development of display holograms, holographic stereograms have evolved from laser illumination to white-light illumination, with improvements in the image quality and ease of viewing.© (1983) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

104 citations


Cited by
More filters
Proceedings ArticleDOI
01 Aug 1996
TL;DR: This paper describes a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views, and describes a compression system that is able to compress the light fields generated by more than a factor of 100:1 with very little loss of fidelity.
Abstract: A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, we describe a simple and robust method for generating new views from arbitrary camera positions without depth information or feature matching, simply by combining and resampling the available images. The key to this technique lies in interpreting the input images as 2D slices of a 4D function the light field. This function completely characterizes the flow of light through unobstructed space in a static scene with fixed illumination. We describe a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views. We hav e created light fields from large arrays of both rendered and digitized images. The latter are acquired using a video camera mounted on a computer-controlled gantry. Once a light field has been created, new views may be constructed in real time by extracting slices in appropriate directions. Since the success of the method depends on having a high sample rate, we describe a compression system that is able to compress the light fields we have generated by more than a factor of 100:1 with very little loss of fidelity. We also address the issues of antialiasing during creation, and resampling during slice extraction. CR Categories: I.3.2 [Computer Graphics]: Picture/Image Generation — Digitizing and scanning, Viewing algorithms; I.4.2 [Computer Graphics]: Compression — Approximate methods Additional keywords: image-based rendering, light field, holographic stereogram, vector quantization, epipolar analysis

4,426 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: A new method for capturing the complete appearance of both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions.
Abstract: This paper discusses a new method for capturing the complete appearance of both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used in computer vision and the rendering process traditionally used in computer graphics, our approach does not rely on geometric representations. Instead we sample and reconstruct a 4D function, which we call a Lumigraph. The Lumigraph is a subset of the complete plenoptic function that describes the flow of light at all positions in all directions. With the Lumigraph, new images of the object can be generated very quickly, independent of the geometric or illumination complexity of the scene or object. The paper discusses a complete working system including the capture of samples, the construction of the Lumigraph, and the subsequent rendering of images from this new representation.

2,986 citations

Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Proceedings ArticleDOI
04 Jun 2007
TL;DR: This work presents PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describes how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.
Abstract: Physical Unclonable Functions (PUFs) are innovative circuit primitives that extract secrets from physical characteristics of integrated circuits (ICs). We present PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describe how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.

2,014 citations

Journal ArticleDOI
TL;DR: This survey examines approaches proposed by scientists for privacy protection and integrity assurance in RFID systems, and treats the social and technical context of their work.
Abstract: This paper surveys recent technical research on the problems of privacy and security for radio frequency identification (RFID). RFID tags are small, wireless devices that help identify objects and people. Thanks to dropping cost, they are likely to proliferate into the billions in the next several years-and eventually into the trillions. RFID tags track objects in supply chains, and are working their way into the pockets, belongings, and even the bodies of consumers. This survey examines approaches proposed by scientists for privacy protection and integrity assurance in RFID systems, and treats the social and technical context of their work. While geared toward the nonspecialist, the survey may also serve as a reference for specialist readers.

1,994 citations