scispace - formally typeset
Search or ask a question
Author

Stephen E. Schneider

Bio: Stephen E. Schneider is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Galaxy & Lenticular galaxy. The author has an hindex of 40, co-authored 122 publications receiving 19338 citations. Previous affiliations of Stephen E. Schneider include Association of Universities for Research in Astronomy.


Papers
More filters
Journal ArticleDOI
TL;DR: The Two Micron All Sky Survey (2MASS) as mentioned in this paper collected 25.4 Tbytes of raw imaging data from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona and CerroTololo, Chile.
Abstract: Between 1997 June and 2001 February the Two Micron All Sky Survey (2MASS) collected 25.4 Tbytes of raw imagingdatacovering99.998%ofthecelestialsphereinthenear-infraredJ(1.25 � m),H(1.65 � m),andKs(2.16 � m) bandpasses. Observations were conducted from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona,andCerroTololo,Chile.The7.8sofintegrationtimeaccumulatedforeachpointontheskyandstrictquality control yielded a 10 � point-source detection level of better than 15.8, 15.1, and 14.3 mag at the J, H, and Ks bands, respectively, for virtually the entire sky. Bright source extractions have 1 � photometric uncertainty of <0.03 mag and astrometric accuracy of order 100 mas. Calibration offsets between any two points in the sky are <0.02 mag. The 2MASS All-Sky Data Release includes 4.1 million compressed FITS images covering the entire sky, 471 million source extractions in a Point Source Catalog, and 1.6 million objects identified as extended in an Extended Source Catalog.

12,126 citations

Journal ArticleDOI
TL;DR: The 2MASS Large Galaxy Atlas as mentioned in this paper provides the necessary sensitivity and angular resolution to examine in detail morphologies in the near-infrared, which may be radically different from those in the optical.
Abstract: We present the largest galaxies as seen in the near-infrared (1–2 μm), imaged with the Two Micron All Sky Survey (2MASS), ranging in angular size from 1' to 15. We highlight the 100 largest in the sample. The galaxies span all Hubble morphological types, including elliptical galaxies, normal and barred spirals, and dwarf and peculiar classes. The 2MASS Large Galaxy Atlas provides the necessary sensitivity and angular resolution to examine in detail morphologies in the near-infrared, which may be radically different from those in the optical. Internal structures such as spirals, bulges, warps, rings, bars, and star formation regions are resolved by 2MASS. In addition to large mosaic images, the atlas includes astrometric, photometric, and shape global measurements for each galaxy. A comparison of fundamental measures (e.g., surface brightness, Hubble type) is carried out for the sample and compared with the Third Reference Catalogue. We further showcase NGC 253 and M51 (NGC 5194/5195) to demonstrate the quality and depth of the data. The atlas represents the first uniform, all-sky, dust-penetrated view of galaxies of every type, as seen in the near-infrared wavelength window that is most sensitive to the dominant mass component of galaxies. The images and catalogs are available through the NASA/IPAC Extragalactic Database and Infrared Science Archive and are part of the 2MASS Extended Source Catalog.

1,006 citations

Journal ArticleDOI
TL;DR: The 2 Micron All-Sky Survey (2MASS) as mentioned in this paper will observe over one-million galaxies and extended Galactic sources covering the entire sky at wavelenghts between 1 and 2 m.
Abstract: The 2 Micron All-Sky Survey (2MASS)will observe over one-million galaxies and extended Galactic sources covering the entire sky at wavelenghts between 1 and 2 m. Most of these galaxies, from 70 to 80%, will be newly catalogued objetcs.

972 citations

Journal ArticleDOI
TL;DR: The 2MASS XSC as mentioned in this paper contains nearly a million galaxies with K_s ≤ 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5° for bright galaxies.
Abstract: We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K_s ≤ 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5° for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K_s ≤ 11.75 mag and |b| ≥ 5° (≥8° toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h^(–1) Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K_s ≤ 11.25 mag and |b| ≥ 10°.

643 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Two Micron All Sky Survey (2MASS) as mentioned in this paper collected 25.4 Tbytes of raw imaging data from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona and CerroTololo, Chile.
Abstract: Between 1997 June and 2001 February the Two Micron All Sky Survey (2MASS) collected 25.4 Tbytes of raw imagingdatacovering99.998%ofthecelestialsphereinthenear-infraredJ(1.25 � m),H(1.65 � m),andKs(2.16 � m) bandpasses. Observations were conducted from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona,andCerroTololo,Chile.The7.8sofintegrationtimeaccumulatedforeachpointontheskyandstrictquality control yielded a 10 � point-source detection level of better than 15.8, 15.1, and 14.3 mag at the J, H, and Ks bands, respectively, for virtually the entire sky. Bright source extractions have 1 � photometric uncertainty of <0.03 mag and astrometric accuracy of order 100 mas. Calibration offsets between any two points in the sky are <0.02 mag. The 2MASS All-Sky Data Release includes 4.1 million compressed FITS images covering the entire sky, 471 million source extractions in a Point Source Catalog, and 1.6 million objects identified as extended in an Extended Source Catalog.

12,126 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations