scispace - formally typeset
Search or ask a question

Showing papers by "Stephen E. Williams published in 2008"


Journal ArticleDOI
TL;DR: A novel integrated framework to assess vulnerability and prioritize research and management action aims to improve the ability to respond to this emerging crisis.
Abstract: [Extract] Global climate change threatens global biodiversity, ecosystem function, and human well-being, with thousands of publications demonstrating impacts across a wide diversity of taxonomic groups, ecosystems, economics, and social structure. A review by Hughes [1] identified many of the ways that organisms may be affected by and/or respond to climate change. Since then, there has been a dramatic increase in the number of case studies attesting to ecological impacts [2], prompting several recent reviews on the subject (e.g., [3–6]). Several global meta-analyses confirm the pervasiveness of the global climate change "fingerprint" across continents, ecosystems, processes, and species [7–9]. Some studies have predicted increasingly severe future impacts with potentially high extinction rates in natural systems around the world [10,11]. Responding to this threat will require a concerted, multi-disciplinary, multi-scale, multi-taxon research effort that improves our predictive capacity to identify and prioritise vulnerable species in order to inform governments of the seriousness of the threat and to facilitate conservation adaptation and management [12,13]. If we are to minimise global biodiversity loss, we need significant decreases in global emissions to be combined with environmental management that is guided by sensible prioritisation of relative vulnerability. That is, we need to determine which species, habitats, and ecosystems will be most vulnerable, exactly what aspects of their ecological and evolutionary biology determine their vulnerability, and what we can do about managing this vulnerability and minimising the realised impacts. There is an emerging literature on specific traits that promote vulnerability under climate change (e.g., thermal tolerance [14]) as well as a broad literature on the traits that influence species' vulnerability generally (e.g., review by [15]). Less is known about the various mechanisms for either ecological or evolutionary adaptation to climate change, although it is increasingly recognised as a vital component of assessing vulnerability [16,17].

1,046 citations


Journal ArticleDOI
TL;DR: It is demonstrated that within-year climatic variability, particularly rainfall seasonality, is the most significant variable explaining spatial patterns of bird abundance in Australian tropical rainforest and suggested that increasing climatic seasonality due to global climate change has the potential to have significant negative impacts on tropical biodiversity.
Abstract: We demonstrate that within-year climatic variability, particularly rainfall seasonality, is the most significant variable explaining spatial patterns of bird abundance in Australian tropical rainforest. The likely mechanism causing this pattern is a resource bottleneck (insects, nectar, and fruit) during the dry season that limits the population size of many species. The patterns support both the diversity–climatic–stability hypothesis and the species–energy hypothesis but clearly show that seasonality in energy availability may be a more significant factor than annual totals or means. An index of dry season severity is proposed that quantifies the combined effect of the degree of dryness and the duration of the dry season. We suggest that the predicted increases in seasonality due to global climate change could produce significant declines in bird abundance, further exacerbating the impacts of decreased range size, increased fragmentation, and decreased population size likely to occur as a result of increasing temperature. We suggest that increasing climatic seasonality due to global climate change has the potential to have significant negative impacts on tropical biodiversity.

151 citations


Journal ArticleDOI
TL;DR: The utility of combining distribution and ecological niche modelling for retrieving information on invasion processes, based on species occurrence data from native and introduced ranges, is examined.
Abstract: Spatial modelling of species distributions has become an important tool in the study of biological invasions. Here, we examine the utility of combining distribution and ecological niche modelling for retrieving information on invasion processes, based on species occurrence data from native and introduced ranges. Specifically, we discuss questions, concerning (1) the global potential to spread to other ranges, (2) the potential to spread within established invasions, (3) the detectability of niche differences across ranges, and (4) the ability to infer invasion history through data from the introduced range. We apply this approach to two congeneric pavement ants, Tetramorium sp.E (formerly T. caespitum (Linnaeus 1758)) and T. tsushimae Emery 1925, both introduced to North America. We identify (1) the potential of both species to inhabit ranges worldwide, and (2) the potential of T. sp.E and T. tsushimae, to spread to 23 additional US states and to five provinces of Canada, and to 24 additional US states and to one province of Canada, respectively. We confirm that (3) niche modelling can be an effective tool to detect niche shifts, identifying an increased width of T. sp.E and a decreased width of T. tsushimae following introduction, with potential changes in niche position for both species. We make feasible that (4) combined modelling could become an auxiliary tool to reconstruct invasion history, hypothesizing admixture following multiple introductions in North America for T. sp.E, and a single introduction to North America from central Japan, for T. tsushimae. Combined modelling represents a rapid means to formulate testable explanatory hypotheses on invasion patterns and helps approach a standard in predictive invasion research.

114 citations


Book ChapterDOI
01 Apr 2008
TL;DR: In this article, the authors bring together a wealth of scientific findings and ecological knowledge to survey what we have learned about the "Wet Tropics" rainforests of North Queensland, Australia.
Abstract: This book brings together a wealth of scientific findings and ecological knowledge to survey what we have learned about the "Wet Tropics" rainforests of North Queensland, Australia. This interdisciplinary text is the first book to provide such a holistic view of any tropical forest environment, including the social and economic dimensions.

13 citations


Book ChapterDOI
01 Apr 2008
TL;DR: This interdisciplinary text is the first book to provide such a holistic view of any tropical forest environment, including the social and economic dimensions.
Abstract: This book brings together a wealth of scientific findings and ecological knowledge to survey what we have learned about the "Wet Tropics" rainforests of North Queensland, Australia This interdisciplinary text is the first book to provide such a holistic view of any tropical forest environment, including the social and economic dimensions

10 citations