scispace - formally typeset
Search or ask a question
Author

Stephen Farber

Other affiliations: Louisiana State University
Bio: Stephen Farber is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Ecosystem services & Valuation (finance). The author has an hindex of 26, co-authored 49 publications receiving 13502 citations. Previous affiliations of Stephen Farber include Louisiana State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an updated estimate based on updated unit ecosystem service values and land use change estimates between 1997 and 2011, using the same methods as in the 1997 paper but with updated data, the estimate for the total global ecosystem services in 2011 is $125 trillion/yr (assuming updated unit values and changes to biome areas).
Abstract: In 1997, the global value of ecosystem services was estimated to average $33 trillion/yr in 1995 $US ($46 trillion/yr in 2007 $US). In this paper, we provide an updated estimate based on updated unit ecosystem service values and land use change estimates between 1997 and 2011. We also address some of the critiques of the 1997 paper. Using the same methods as in the 1997 paper but with updated data, the estimate for the total global ecosystem services in 2011 is $125 trillion/yr (assuming updated unit values and changes to biome areas) and $145 trillion/yr (assuming only unit values changed), both in 2007 $US. From this we estimated the loss of eco-services from 1997 to 2011 due to land use change at $4.3–20.2 trillion/yr, depending on which unit values are used. Global estimates expressed in monetary accounting units, such as this, are useful to highlight the magnitude of eco-services, but have no specific decision-making context. However, the underlying data and models can be applied at multiple scales to assess changes resulting from various scenarios and policies. We emphasize that valuation of eco-services (in whatever units) is not the same as commodification or privatization. Many eco-services are best considered public goods or common pool resources, so conventional markets are often not the best institutional frameworks to manage them. However, these services must be (and are being) valued, and we need new, common asset institutions to better take these values into account.

3,932 citations

Journal ArticleDOI
TL;DR: This paper provided a crude initial estimate of the value of ecosystem services to the economy using data from previous published studies and a few original calculations, and estimated the current economic value of 17 ecosystem services for 16 biomes.

2,592 citations

Journal ArticleDOI
TL;DR: In this paper, the authors trace the history leading up to these publications and the subsequent debates, research, institutions, policies, on-the-ground actions, and controversies they triggered.
Abstract: It has been 20 years since two seminal publications about ecosystem services came out: an edited book by Gretchen Daily and an article in Nature by a group of ecologists and economists on the value of the world’s ecosystem services. Both of these have been very highly cited and kicked off an explosion of research, policy, and applications of the idea, including the establishment of this journal. This article traces the history leading up to these publications and the subsequent debates, research, institutions, policies, on-the-ground actions, and controversies they triggered. It also explores what we have learned during this period about the key issues: from definitions to classification to valuation, from integrated modelling to public participation and communication, and the evolution of institutions and governance innovation. Finally, it provides recommendations for the future. In particular, it points to the weakness of the mainstream economic approaches to valuation, growth, and development. It concludes that the substantial contributions of ecosystem services to the sustainable wellbeing of humans and the rest of nature should be at the core of the fundamental change needed in economic theory and practice if we are to achieve a societal transformation to a sustainable and desirable future.

1,514 citations

Journal ArticleDOI
09 Aug 2002-Science
TL;DR: It is estimated that the overall benefit:cost ratio of an effective global program for the conservation of remaining wild nature is at least 100:1.
Abstract: On the eve of the World Summit on Sustainable Development, it is timely to assess progress over the 10 years since its predecessor in Rio de Janeiro. Loss and degradation of remaining natural habitats has continued largely unabated. However, evidence has been accumulating that such systems generate marked economic benefits, which the available data suggest exceed those obtained from continued habitat conversion. We estimate that the overall benefit:cost ratio of an effective global program for the conservation of remaining wild nature is at least 100:1.

1,467 citations

Journal ArticleDOI
TL;DR: The concept of ecosystem service value can be a useful guide when distinguishing and measuring where trade-offs between society and the rest of nature are possible and where they can be made to enhance human welfare in a sustainable manner.

1,122 citations


Cited by
More filters
Journal ArticleDOI
15 May 1997-Nature
TL;DR: In this paper, the authors have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations, for the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US $33 trillion per year.
Abstract: The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year.

18,139 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations

Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual framework and typology for describing, classifying and valuing ecosystem functions, goods and services in a clear and consistent manner is presented. And a classification is given for the fullest possible range of 23 ecosystem functions.

4,081 citations